Approximations of McKean–Vlasov Stochastic Differential Equations with Irregular Coefficients
Tóm tắt
Từ khóa
Tài liệu tham khảo
Airachid, H., Bossy, M., Ricci, C., Szpruch, L.: New particle representations for ergodic McKean-Vlasov SDEs. ESAIM Proc. S. 65, 68–83 (2019)
Bao, J., Huang, X., Yuan, C.: Convergence rate of Euler-Maruyama scheme for SDEs with Hölder-dini Continuous drifts. J. Theor. Probab. 32, 848–871 (2019)
Bauer, M., Meyer-Brandis, T., Proske, F.: Strong solutions of mean-field stochastic differential equations with irregular drift. Electron. J. Probab. 23, 1–35 (2018)
Buckdahn, R., Li, J., Ma, J.: A mean-field stochastic control problem with partial observations. Ann. Appl. Probab. 27, 3201–3245 (2017)
Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45, 824–878 (2017)
Budhiraja, A., Fan, W.-T.: Uniform in time interacting particle approximations for nonlinear equations of Patlak-Keller-Segel type. Electron. J. Probab. 22, 1–37 (2017)
Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications. I. Mean field FBSDEs, control, and games. Probability Theory and Stochastic Modelling, 83. Springer, Cham (2018)
Chaman, K., Neelima, Christoph, R., Wolfgang, S.: Well-posedness and tamed schemes for McKean-Vlasov equations with common noise, arXiv:2006.00463
Chaudru de Raynal, P.-E.: Strong existence and uniqueness for stochastic differential equation with Hölder drift and degenerate noise, arxiv:1205.6688
de Raynal, P.E.C.: Strong well-posedness of McKean-Vlasov stochastic differential equation with Hölder drift. Stoch. Process Appl. 130, 79–107 (2020)
Chassagneux, J.-F., Szpruch, L., Tse, A.: Weak quantitative propagation of chaos via differential calculus on the space of measures, arXiv:1901.02556
Christoph, R., Wolfgang, S.: An adaptive Euler-Maruyama scheme for McKean SDEs with super-linear growth and application to the mean-field FitzHugh-Nagumo model. arXiv:2005.06034
Cox, J.C., Ingersoll, J.E., Ross, S.A.: An intertemporal general equilibrium model of asset prices. Econometrica 53, 363–384 (1985)
Crisan, D., McMurray, E.: Smoothing properties of McKean-Vlasov SDEs. Probab. Theor. Relat. Fields 171, 97–148 (2018)
dos Reis, G., Smith, G., Tankov, P.: Importance sampling for McKean-Vlasov SDEs, arXiv:1803.09320
dos Reis, G., Salkeld, W., Tugaut, J.: Freidlin-Wentzell LDP in path space for McKean-Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab. 29, 1487–1540 (2019)
dos Reis, G., Engelhardt, S., Smith, G.: Simulation of McKean-Vlasov SDEs with super linear growth, arXiv:1808.05530
Eberle, A., Guillin, A., Zimmer, R.: Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes. Trans. Am. Math. Soc. 371, 7135–7173 (2019)
Gyöngy, I., Rásonyi, M.: A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Process. Appl. 121, 2189–2200 (2011)
Hammersley, W., Siska, D., Szpruch, L.: McKean-Vlasov SDEs under measure dependent Lyapunov conditions, arXiv:1802.03974v2
Huang, X., Wang, F.-Y.: Distribution dependent SDEs with singular coefficients. Stoch. Process. Appl. 129, 4747–4770 (2019)
Huang, X., Wang, F.-Y.: McKean-Vlasov SDEs with drifts discontinuous under Wasserstein distance, arXiv:2002.06877v2
Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo (1981)
Kumar, C., Neelima: On explicit Milstein-type schemes for McKean-Vlasov Stochastic Differential Equations with super-linear drift coefficient, arXiv:2004.01266
Li, J., Min, H.: Weak solutions of mean-field stochastic differential equations and application to zero-sum stochastic differential games. SIAM J. Control Optim. 54, 1826–1858 (2016)
Malrieu, F.: Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13, 540–560 (2003)
Mehri, S., Stannat, W.: Weak solutions to Vlasov-McKean equations under Lyapunov-type conditions. Stoch. Dyn. 19, 1950042 (2019)
McKean, H.P., Jr.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. USA 56, 1907–1911 (1966)
Mezerdi, M.A., Bahlali, K., Khelfallah, N., Mezerdi, B.: Approximation and generic properties of McKean-Vlasov stochastic equations with continuous coefficients, arXiv: 1909.13699
Mishura, Y.S., Veretennikov, A.Yu: Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations, arXiv:1603.02212v8
Ngo, H.-L., Taguchi, D.: Strong rate of convergence for the Euler–Maruyama approximation of stochastic differential equations with irregular coefficients. Math. Comput. 85, 1793–1819 (2016)
Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Springer, Berlin (2007)
Ren, P., Röckner, M., Wang, F.-Y.: Linearization of Nonlinear Fokker-Planck Equations and Applications, arXiv:1904.06795v3
Röckner, M., Zhang, X.: Well-posedness of distribution dependent SDEs with singular drifts, arXiv:1809.02216
Situ, R.: Theory Of Stochastic Differential Equations With Jumps And Applications. Springer, New York (2005)
Szpruch, L., Tse, A.: Antithetic multilevel particle system sampling method for McKean-Vlasov SDEs, arXiv:1903.07063
Wang, F.-Y.: Distribution dependent SDEs for Landau type equations. Stoch. Process. Appl. 128, 595–621 (2018)