Approximations of McKean–Vlasov Stochastic Differential Equations with Irregular Coefficients

Springer Science and Business Media LLC - Tập 35 Số 2 - Trang 1187-1215 - 2022
Jianhai Bao1, Xing Huang1
1Center for Applied Mathematics, Tianjin University, Tianjin, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Airachid, H., Bossy, M., Ricci, C., Szpruch, L.: New particle representations for ergodic McKean-Vlasov SDEs. ESAIM Proc. S. 65, 68–83 (2019)

Bao, J., Huang, X., Yuan, C.: Convergence rate of Euler-Maruyama scheme for SDEs with Hölder-dini Continuous drifts. J. Theor. Probab. 32, 848–871 (2019)

Bauer, M., Meyer-Brandis, T., Proske, F.: Strong solutions of mean-field stochastic differential equations with irregular drift. Electron. J. Probab. 23, 1–35 (2018)

Buckdahn, R., Li, J., Ma, J.: A mean-field stochastic control problem with partial observations. Ann. Appl. Probab. 27, 3201–3245 (2017)

Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45, 824–878 (2017)

Budhiraja, A., Fan, W.-T.: Uniform in time interacting particle approximations for nonlinear equations of Patlak-Keller-Segel type. Electron. J. Probab. 22, 1–37 (2017)

Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications. I. Mean field FBSDEs, control, and games. Probability Theory and Stochastic Modelling, 83. Springer, Cham (2018)

Chaman, K., Neelima, Christoph, R., Wolfgang, S.: Well-posedness and tamed schemes for McKean-Vlasov equations with common noise, arXiv:2006.00463

Chaudru de Raynal, P.-E.: Strong existence and uniqueness for stochastic differential equation with Hölder drift and degenerate noise, arxiv:1205.6688

de Raynal, P.E.C.: Strong well-posedness of McKean-Vlasov stochastic differential equation with Hölder drift. Stoch. Process Appl. 130, 79–107 (2020)

Chassagneux, J.-F., Szpruch, L., Tse, A.: Weak quantitative propagation of chaos via differential calculus on the space of measures, arXiv:1901.02556

Christoph, R., Wolfgang, S.: An adaptive Euler-Maruyama scheme for McKean SDEs with super-linear growth and application to the mean-field FitzHugh-Nagumo model. arXiv:2005.06034

Cox, J.C., Ingersoll, J.E., Ross, S.A.: An intertemporal general equilibrium model of asset prices. Econometrica 53, 363–384 (1985)

Crisan, D., McMurray, E.: Smoothing properties of McKean-Vlasov SDEs. Probab. Theor. Relat. Fields 171, 97–148 (2018)

dos Reis, G., Smith, G., Tankov, P.: Importance sampling for McKean-Vlasov SDEs, arXiv:1803.09320

dos Reis, G., Salkeld, W., Tugaut, J.: Freidlin-Wentzell LDP in path space for McKean-Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab. 29, 1487–1540 (2019)

dos Reis, G., Engelhardt, S., Smith, G.: Simulation of McKean-Vlasov SDEs with super linear growth, arXiv:1808.05530

Eberle, A., Guillin, A., Zimmer, R.: Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes. Trans. Am. Math. Soc. 371, 7135–7173 (2019)

Gyöngy, I., Rásonyi, M.: A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Process. Appl. 121, 2189–2200 (2011)

Hammersley, W., Siska, D., Szpruch, L.: McKean-Vlasov SDEs under measure dependent Lyapunov conditions, arXiv:1802.03974v2

Huang, X., Wang, F.-Y.: Distribution dependent SDEs with singular coefficients. Stoch. Process. Appl. 129, 4747–4770 (2019)

Huang, X., Wang, F.-Y.: McKean-Vlasov SDEs with drifts discontinuous under Wasserstein distance, arXiv:2002.06877v2

Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo (1981)

Kumar, C., Neelima: On explicit Milstein-type schemes for McKean-Vlasov Stochastic Differential Equations with super-linear drift coefficient, arXiv:2004.01266

Li, J., Min, H.: Weak solutions of mean-field stochastic differential equations and application to zero-sum stochastic differential games. SIAM J. Control Optim. 54, 1826–1858 (2016)

Malrieu, F.: Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13, 540–560 (2003)

Mehri, S., Stannat, W.: Weak solutions to Vlasov-McKean equations under Lyapunov-type conditions. Stoch. Dyn. 19, 1950042 (2019)

McKean, H.P., Jr.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. USA 56, 1907–1911 (1966)

Mezerdi, M.A., Bahlali, K., Khelfallah, N., Mezerdi, B.: Approximation and generic properties of McKean-Vlasov stochastic equations with continuous coefficients, arXiv: 1909.13699

Mishura, Y.S., Veretennikov, A.Yu: Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations, arXiv:1603.02212v8

Ngo, H.-L., Taguchi, D.: Strong rate of convergence for the Euler–Maruyama approximation of stochastic differential equations with irregular coefficients. Math. Comput. 85, 1793–1819 (2016)

Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Springer, Berlin (2007)

Ren, P., Röckner, M., Wang, F.-Y.: Linearization of Nonlinear Fokker-Planck Equations and Applications, arXiv:1904.06795v3

Röckner, M., Zhang, X.: Well-posedness of distribution dependent SDEs with singular drifts, arXiv:1809.02216

Situ, R.: Theory Of Stochastic Differential Equations With Jumps And Applications. Springer, New York (2005)

Sznitman, A.-S.: Topics In Propagation Of Chaos. Springer, Berlin (1991)

Szpruch, L., Tse, A.: Antithetic multilevel particle system sampling method for McKean-Vlasov SDEs, arXiv:1903.07063

Wang, F.-Y.: Distribution dependent SDEs for Landau type equations. Stoch. Process. Appl. 128, 595–621 (2018)

Zhang, X.: A discretized version of Krylovs estimate and its applications. Electron. J. Probab. 24, 1–17 (2019)