Approximation by finite differences of the propagation of acoustic waves in stratified media

Springer Science and Business Media LLC - Tập 54 - Trang 655-702 - 1989
J. C. Guillot1, P. Joly2
1Department de Mathématiques, Centre Scientifique et Polytechnique, Université Paris Nord, Villetaneuse, France
2Institut National de Recherche en Informatique et Automatique, Domaine de Voluceau, Le Chesnay, France

Tóm tắt

In this paper, we analyze the approximation of acoustic waves in a two layered media by a finite diffrences variational scheme. We examine in particular the approximation of the guided waves. We point out the existence of purely numerical parasitic phenomena and quantify the numerical dispersion relative to guided waves.

Tài liệu tham khảo

Achenbach, J.D.: Wave propagation in elastic solids. Amsterdam: North Holland 1973 Alford, R.M., Kelly, R., Boore, D.M.: Accuracy of finite difference modelling of the acoustic wave equation. Geophysics.6, 834–842 (1974) Bamberger, A., Chavent, G., Lailly, P.: Etude the schémas numérique des équations de lélastodynamique linéaire. Rapport INRIA No. 41, October 1980 Bamberger, A., Guillot, J.C., Joly, P.: Numerical diffraction by a uniform grid. SIAM Numer. Anal.25, 753–783 (1988) Lions, J.L.: Cours d'Analyse Numérique. Paris: Hermann 1973 Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North Holland 1978 Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. New York: Mac Graw Hill 1955 Daudier, S., Nicoletis, L.: Study of reflection and transmission properties of the variational scheme with finite differences. Rapport IFP 1984 Dermenjian, Y., Guillot, J.C.: Theorle spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbé. J. Diff. Eq.62, 357–409 (1986) Dunford, N., Schwartz, J.J.: Linear Operators, Part II; Spectral Theory. New York: Interscience 1983 Guillot, J.C.: Completude des modes T.E. et T.M. pour un guide d'ondes optique planaire. Rapport INRIA No. 385, Mars 1985 Guillot, J.C., Joly, P.: Approximation par differences finies de la propagation d'ondes acoustique en milieu stratifié(1). Rapport INRIA (in preparation) Guillot, J.C., Joly, P.: Approximation numérique de la propagation, des ondes acoustiques en milieu stratifié. Note aux C.R. Acad. Sci. Paris, t. 303, Série I, No. 5, 1986 Guillot, J.C., Wilcox, C.H.: Spectral analysis of the Epstein operator. Proc. R. Soc. Edinb. Sect. A80, 85–98 (1978) Höhn, W.: Finite elements for the eigenvalue problem of differential operators in unbounded intervals. Math. Methods Appl. Sci.7, 1–19 (1985) Joly, P.: Analyse numérique des ondes de Rayleigh. Thèse de 3ème Cycle Université Paris Dauphine 1983 Kelly, R.: Numerical study of Love waves. Geophysics, Vol. 48, No. 7 (1983) Miklowitz, J.: The theory of elastic waves and wave-guides. Amsterdam: North-Holland 1980 Nicoletis, L.: Simulation numérique de la propagation d'ondes sismiques. Thèse de Docteur Ingénieur-Université Pierre et Marie Curie 1981 Raviart, P.A., Thomas, J.M.: Analyse numérique des équations aux dérivées partielles. Paris: Masson 1983 Trefethen, L.N.: Group velocity in finite difference schemes. SIAM Review. Vol. 24, No. 2, April 1982 Vichnevetsky, R., Bowles, J.B.: Fourier Analysis of Numerical Approximations of Hyperbolic equations. SIAM Stud. Appl. Math., Philadelphia, 1982 Weder, R.: Spectral and scattering theory in perturbed stratified fluids. J. Math. Pures Appl.64, 149–173 (1985) Weder, R.: Spectral an scattering theory in perturbed stratified fluids II: transmission problems and exterior domains. J. Differ. Equations64, 109–131 (1986) Weinberger, H.: Variational Methods for Eigenvalue Approximations. SIAM-Regional Conference Series in Applied Mathematics 1974 Wilcox, C.H.: Spectral analysis of the Pekeris operators. Arch. Ration. Mech. Anal.60, 259, 300 (1976) Wilcox, C.H.: Sound propagation in Stratified Fluids. Appl. Math. Sci. Vol. 50. Berlin Heidelberg New York: Springer 1984