Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự xấp xỉ bởi các toán tử lấy mẫu Kantorovich hàm mũ đa biến tối đa
Tóm tắt
Hành vi xấp xỉ của các toán tử lấy mẫu hàm mũ Kantorovich đa biến tối đa đã được phân tích. Định lý xấp xỉ điểm-wise và đồng nhất cho các chuỗi lấy mẫu này $$I^{\chi ,(M)}_{\textbf{w},j}$$ đã được chứng minh. Mức độ xấp xỉ về mặt mô-đun logarit của độ mịn được nghiên cứu. Đối với lớp các hàm log-Hölderian, thứ tự hội tụ chuẩn đồng nhất đã được thiết lập. Các định lý hội tụ chuẩn cho các toán tử lấy mẫu hàm mũ Kantorovich đa biến trong không gian Mellin–Lebesgue đã được nghiên cứu.
Từ khóa
#Hàm mũ Kantorovich #Xấp xỉ #Toán tử lấy mẫu #Hội tụ chuẩn #Không gian Mellin–LebesgueTài liệu tham khảo
Acar, T., Kursun, S., Turgay, M.: Multidimensional Kantorovich modifications of exponential sampling series. Quaestiones Mathematicae (2021). https://doi.org/10.2989/16073606.2021.1992033
Aral, A., Acar, T., Kursun, S.: Generalized Kantorovich forms of exponential sampling series. Anal. Math. Phys. 12, 50 (2022)
Angamuthu, S.K., Bajpeyi, S.: Direct and inverse results for Kantorovich type exponential sampling series. Results Math. 75, 119 (2020)
Balsamo, S., Mantellini, I.: On linear combinations of general exponential sampling series. Results Math. 74(4), 180 (2019)
Bajpeyi, S., Kumar, A.S.: On approximation by Kantorovich exponential sampling operators. Numer. Funct. Anal. Optim. 42(9), 1096–1113 (2021)
Bajpeyi, S., Kumar, A.S.: Approximation by exponential sampling type neural network operators. Anal. Math. Phys. 11, 108 (2021)
Bajpeyi, S., Kumar, A.S.: Max-Product Type Exponential Neural Network Operators. Mathematical Analysis and Computing. Springer Proceedings in Mathematics and Statistics. Springer, Singapore, vol. 344, pp. 561–571 (2021)
Bardaro, C., Bevignani, G., Mantellini, I., Seracini, M.: Bivariate generalized exponential sampling series and applications to seismic waves. Constr. Math. Anal. 2(4), 153–167 (2019)
Bardaro, C., Mantellini, I.: On Mellin convolution operators: a direct approach to the asymptotic formulae. Integr. Transf. Spec. Funct. 25, 182–195 (2014)
Bardaro, C., Mantellini, I.: Asymptotic formulae for linear combinations of generalized sampling operators. Z. Anal. Anwend. 32(3), 279–298 (2013)
Bardaro, C., Mantellini, I.: On linear combinations of multivariate generalized sampling type series. Mediterr. J. Math. 10, 1833–1852 (2013)
Bardaro, C., Faina, L., Mantellini, I.: A generalization of the exponential sampling series and its approximation properties. Math. Slovaca 67, 1481–1496 (2017)
Bardaro, C., Mantellini, I., Schmeisser, G.: Exponential sampling series: convergence in Mellin–Lebesgue spaces. Results Math. 74, 20–119 (2019)
Bardaro, C., Mantellini, I., Tittarelli, I.: Convergence of semi-discrete exponential sampling operators in Mellin–Lebesgue spaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 30 (2023)
Bertero, M., Pike, E.R.: Exponential-sampling method for Laplace and other dilationally invariant transforms. II. Examples in photon correlation spectroscopy and Fraunhofer diffraction. Inverse Prob. 7, 21–41 (1991)
Butzer, P.L., Stens, R.L.: Linear prediction by samples from the past. In: Advanced Topics in Shannon Sampling and Interpolation Theory, Springer Texts Electrical Eng., Springer, New York, pp. 157–183 (1993)
Butzer, P.L., Jansche, S.: The exponential sampling theorem of signal analysis, Dedicated to Prof. C. Vinti (Italian) (Perugia, 1996), Atti del Seminario matematico e fisico dell’Universitá di Modena, Suppl. 46, 99–122 (1998)
Butzer, P.L.: A survey of the Whittaker–Shannon sampling theorem and some of its extensions. J. Math. Res. Expos. 3, 185–212 (1983)
Butzer, P.L., Stens, R.L.: A modification of the Whittaker–Kotelnikov–Shannon sampling series. Aequntiones Muth. 2(8), 305–311 (1985)
Butzer, P.L., Ries, S., Stens, R.L.: Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory 50(1), 25–39 (1987)
Casasent, D.: Optical data Processing, pp. 241–282. Springer, Berlin (1978)
Coroianu, L., Costarelli, D., Gal, S.G., Vinti, G.: Approximation by multivariate max-product Kantorovich type operators and learning rates of least-squares regularized regression. Commun. Pure Appl. Anal. 19(8), 4213–4225 (2020)
Coroianu, L., Costarelli, D., Gal, S.G., Vinti, G.: The max-product generalized sampling operators: convergence and quantitative estimates. Appl. Math. Comput. 355, 173–183 (2019)
Coroianu, L., Costarelli, D., Gal, S.G., Vinti, G.: Approximation by max-product sampling Kantorovich operators with generalized kernels. Anal. Appl. 19(2), 219–244 (2021)
Coroianu, L., Gal, S.G.: Approximation by nonlinear generalized sampling operators of max-product kind. Sampl. Theory Signal Image Process. 9(1–3), 59–75 (2010)
Coroianu, L., Gal, S.G.: Approximation by max-product sampling operators based on sinc-type kernels. Sampl. Theory Signal Image Process. 10(3), 211–230 (2011)
Costarelli, D., Spigler, R.: How sharp is the Jensen inequality? J. Inequal. Appl. 2015, 1–10 (2015)
Folland, G.B.: Real Analysis. Modern Techniques and Their Applications. Wiley, New York (1984)
Higgins, J.R.: Five short stories about the cardinal series. Bull. Am. Math. Soc. (N.S.) 12(1), 45–89 (1985)
Kursun, S., Turgay, M., Alagöz, O., Acar, T.: Approximation properties of multivariate exponential sampling series. Carpath. Math. Publ. 13(3), 666–675 (2021)
Kumar, A.S., Kumar, P., Ponnaian, D.: Approximation of discontinuous signals by exponential sampling series. Results Math. 77, 23 (2022)
Kumar, A.S., Kumar, P., Ponnaian, D.: Approximation of discontinuous functions by Kantorovich exponential sampling series. Anal. Math. Phys. 12, 73 (2022)
Ostrowsky, N., Sornette, D., Parke, P., Pike, E.R.: Exponential sampling method for light scattering polydispersity analysis. Opt. Acta 28, 1059–1070 (1981)