Approximate Identities and Lagrangian Poincaré Recurrence

Arnold Mathematical Journal - Tập 5 Số 1 - Trang 5-14 - 2019
Viktor L. Ginzburg1, Başak Z. Gürel2
1Department of Mathematics, UC Santa Cruz, Santa Cruz, USA
2Department of Mathematics, University of Central Florida, Orlando, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anosov, D.V., Katok, A.B.: New examples in smooth ergodic theory. Ergodic diffeomorphisms, (in Russian). Trudy Moskov. Mat. Obšč. 23, 3–36 (1970)

Avila, A., Crovisier, S., Wilkinson, A.: Diffeomorphisms with positive metric entropy. Publ. Math. Inst. Hautes Études Sci. 124, 319–347 (2016)

Avila, A., Fayad, B., Le Calvez, P., Xu, D., Zhang, Z.: On mixing diffeomorphisms of the disk (2015). arXiv:1509.06906 (preprint)

Rejeb, K.Ben: Positively equicontinuous flows. Dyn. Syst. 29, 502–516 (2014)

Bramham, B.: Pseudo-rotations with sufficiently Liouvillean rotation number are $$C^0$$-rigid. Invent. Math. 199, 561–580 (2015)

Buhovsky, L., Humilière, V., Seyfaddini, S.: The action spectrum and $$C^0$$ symplectic topology (2018). arXiv:1808.09790 (preprint)

Dress, A.: Newman’s theorems on transformation groups. Topology 8, 203–207 (1969)

Entov, M., Polterovich, L.: Calabi quasimorphism and quantum homology. Int. Math. Res. Not. IMRN 30, 1635–1676 (2003)

Fayad, B., Katok, A.: Constructions in elliptic dynamics. Ergod. Theory Dyn. Syst. 24, 1477–1520 (2004)

Fayad, B., Krikorian, R.: Some questions around quasi-periodic dynamics (2018). arXiv:1809.10375 (preprint)

Frączek, K., Polterovich, L.: Growth and mixing. J. Mod. Dyn. 2, 315–338 (2008)

Frauenfelder, U., Schlenk, F.: Hamiltonian dynamics on convex symplectic manifolds. Israel J. Math. 159, 1–56 (2006)

Ginzburg, V.L., Gürel, B.Z.: On the generic existence of periodic orbits in Hamiltonian dynamics. J. Mod. Dyn. 3, 595–610 (2009)

Ginzburg, V.L., Gürel, B.Z.: The Conley conjecture and beyond. Arnold Math. J. 1, 299–337 (2015)

Ginzburg, V.L., Gürel, B.Z.: Conley conjecture revisited. Int. Math. Res. Not. IMRN (2017). https://doi.org/10.1093/imrn/rnx137

Ginzburg, V.L., Gürel, B.Z.: Hamiltonian pseudo-rotations of complex projective spaces. Invent. Math. 214, 1081–1130 (2018a)

Ginzburg, V.L., Gürel, B.Z.: Pseudo-rotations vs. rotations (2018b). arXiv:1812.05782 (preprint)

Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics, vol. 36. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence (1955)

Guillemin, V., Ginzburg, V., Karshon, Y.: Cobordisms and Hamiltonian Group Actions. Mathematical Surveys and Monographs, vol. 98. American Mathematical Society, Providence (2002)

Gürel, B.Z.: Totally non-coisotropic displacement and its applications to Hamiltonian dynamics. Comm. Contemp. Math. 10, 1103–1128 (2008)

Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkäuser, Basel (1994)

Humilière, V.: On some completions of the space of Hamiltonian maps. Bull. Soc. Math. France 136, 373–404 (2008)

Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge (1995)

Kislev, A., Shelukhin, E.: Bounds on spectral norms and barcodes (2018). arXiv:1810.09865 (preprint)

Kolev, B., Pérouème, M.-C.: Recurrent surface homeomorphisms. Math. Proc. Camb. Philos. Soc. 124, 161–168 (1998)

Kunde, P.: Uniform rigidity sequences for weakly mixing diffeomorphisms on $$\mathbb{D}^m$$, $$\mathbb{T}^m$$ and $$\mathbb{S}^1\times [0,1]^{m-1}$$. J. Math. Anal. Appl. 462, 1398–1424 (2018)

Marcus, B.: The horocycle flow is mixing of all degrees. Invent. Math. 46, 201–209 (1978)

McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, vol. 52. Colloquium publications, AMS, Providence (2012)

Montgomery, D., Zippin, L.: Topological Transformation Groups. Interscience Publishers, New York (1955)

Newman, M.H.A.: A theorem on periodic transformations of spaces. Quart. J. Math. Oxford Ser. 2, 1–8 (1931)

Oh, Y.-G.: Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group. Duke Math. J. 130, 199–295 (2005)

Oh, Y.-G.: Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds. In: The Breadth of Symplectic and Poisson Geometry. Progr. Math., vol. 232. Birkhäuser, Boston, pp. 525–570 (2005)

Parasjuk, O.S.: Horocycle flows on manifolds of constant negative curvature. Uspehi Math. Nauk 8, 125–126 (1953)

Pardon, J.: The Hilbert-Smith conjecture for three-manifolds. J. Am. Math. Soc. 26, 879–899 (2013)

Polterovich, L.: Growth of maps, distortion in groups and symplectic geometry. Invent. Math. 150, 655–686 (2002)

Polterovich, L.: Slow symplectic maps, continued fractions, and related stories. In: Symplectic and Contact Topology: Interactions and Perspectives (Toronto, ON/Montreal, QC, 2001), pp. 165–173, Fields Inst. Commun., 35, Am. Math. Soc., Providence, RI (2003)

Polterovich, L., Sodin, M.: A growth gap for diffeomorphisms of the interval. J. Anal. Math. 92, 191–209 (2004)

Repovš, D., Ščepin, E.V.: A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps. Math. Ann. 308, 361–364 (1997)

Salamon, D.A.: Lectures on Floer homology. In: Symplectic Geometry and Topology, IAS/Park City Math. Ser., vol. 7, Am. Math. Soc., Providence, RI, 143–229 (1999)

Schwarz, M.: On the action spectrum for closed symplectically aspherical manifolds. Pac. J. Math. 193, 419–461 (2000)

Shelukhin, E.: Viterbo conjecture for Zoll symmetric spaces (2018). arXiv:1811.05552 (preprint)

Tao, T.: Hilbert’s Fifth Problem and Related Topics. Graduate Studies in Mathematics, vol. 153. American Mathematical Society, Providence (2014)

Viterbo, C.: Symplectic topology as the geometry of generating functions. Math. Ann. 292, 685–710 (1992)