Approximate Identities and Lagrangian Poincaré Recurrence
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anosov, D.V., Katok, A.B.: New examples in smooth ergodic theory. Ergodic diffeomorphisms, (in Russian). Trudy Moskov. Mat. Obšč. 23, 3–36 (1970)
Avila, A., Crovisier, S., Wilkinson, A.: Diffeomorphisms with positive metric entropy. Publ. Math. Inst. Hautes Études Sci. 124, 319–347 (2016)
Avila, A., Fayad, B., Le Calvez, P., Xu, D., Zhang, Z.: On mixing diffeomorphisms of the disk (2015). arXiv:1509.06906 (preprint)
Bramham, B.: Pseudo-rotations with sufficiently Liouvillean rotation number are $$C^0$$-rigid. Invent. Math. 199, 561–580 (2015)
Buhovsky, L., Humilière, V., Seyfaddini, S.: The action spectrum and $$C^0$$ symplectic topology (2018). arXiv:1808.09790 (preprint)
Entov, M., Polterovich, L.: Calabi quasimorphism and quantum homology. Int. Math. Res. Not. IMRN 30, 1635–1676 (2003)
Fayad, B., Katok, A.: Constructions in elliptic dynamics. Ergod. Theory Dyn. Syst. 24, 1477–1520 (2004)
Fayad, B., Krikorian, R.: Some questions around quasi-periodic dynamics (2018). arXiv:1809.10375 (preprint)
Frauenfelder, U., Schlenk, F.: Hamiltonian dynamics on convex symplectic manifolds. Israel J. Math. 159, 1–56 (2006)
Ginzburg, V.L., Gürel, B.Z.: On the generic existence of periodic orbits in Hamiltonian dynamics. J. Mod. Dyn. 3, 595–610 (2009)
Ginzburg, V.L., Gürel, B.Z.: Conley conjecture revisited. Int. Math. Res. Not. IMRN (2017). https://doi.org/10.1093/imrn/rnx137
Ginzburg, V.L., Gürel, B.Z.: Hamiltonian pseudo-rotations of complex projective spaces. Invent. Math. 214, 1081–1130 (2018a)
Ginzburg, V.L., Gürel, B.Z.: Pseudo-rotations vs. rotations (2018b). arXiv:1812.05782 (preprint)
Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics, vol. 36. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence (1955)
Guillemin, V., Ginzburg, V., Karshon, Y.: Cobordisms and Hamiltonian Group Actions. Mathematical Surveys and Monographs, vol. 98. American Mathematical Society, Providence (2002)
Gürel, B.Z.: Totally non-coisotropic displacement and its applications to Hamiltonian dynamics. Comm. Contemp. Math. 10, 1103–1128 (2008)
Humilière, V.: On some completions of the space of Hamiltonian maps. Bull. Soc. Math. France 136, 373–404 (2008)
Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge (1995)
Kislev, A., Shelukhin, E.: Bounds on spectral norms and barcodes (2018). arXiv:1810.09865 (preprint)
Kolev, B., Pérouème, M.-C.: Recurrent surface homeomorphisms. Math. Proc. Camb. Philos. Soc. 124, 161–168 (1998)
Kunde, P.: Uniform rigidity sequences for weakly mixing diffeomorphisms on $$\mathbb{D}^m$$, $$\mathbb{T}^m$$ and $$\mathbb{S}^1\times [0,1]^{m-1}$$. J. Math. Anal. Appl. 462, 1398–1424 (2018)
McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, vol. 52. Colloquium publications, AMS, Providence (2012)
Montgomery, D., Zippin, L.: Topological Transformation Groups. Interscience Publishers, New York (1955)
Newman, M.H.A.: A theorem on periodic transformations of spaces. Quart. J. Math. Oxford Ser. 2, 1–8 (1931)
Oh, Y.-G.: Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group. Duke Math. J. 130, 199–295 (2005)
Oh, Y.-G.: Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds. In: The Breadth of Symplectic and Poisson Geometry. Progr. Math., vol. 232. Birkhäuser, Boston, pp. 525–570 (2005)
Parasjuk, O.S.: Horocycle flows on manifolds of constant negative curvature. Uspehi Math. Nauk 8, 125–126 (1953)
Polterovich, L.: Growth of maps, distortion in groups and symplectic geometry. Invent. Math. 150, 655–686 (2002)
Polterovich, L.: Slow symplectic maps, continued fractions, and related stories. In: Symplectic and Contact Topology: Interactions and Perspectives (Toronto, ON/Montreal, QC, 2001), pp. 165–173, Fields Inst. Commun., 35, Am. Math. Soc., Providence, RI (2003)
Polterovich, L., Sodin, M.: A growth gap for diffeomorphisms of the interval. J. Anal. Math. 92, 191–209 (2004)
Repovš, D., Ščepin, E.V.: A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps. Math. Ann. 308, 361–364 (1997)
Salamon, D.A.: Lectures on Floer homology. In: Symplectic Geometry and Topology, IAS/Park City Math. Ser., vol. 7, Am. Math. Soc., Providence, RI, 143–229 (1999)
Schwarz, M.: On the action spectrum for closed symplectically aspherical manifolds. Pac. J. Math. 193, 419–461 (2000)
Shelukhin, E.: Viterbo conjecture for Zoll symmetric spaces (2018). arXiv:1811.05552 (preprint)
Tao, T.: Hilbert’s Fifth Problem and Related Topics. Graduate Studies in Mathematics, vol. 153. American Mathematical Society, Providence (2014)