Appropriateness of full‐, partial‐ and no‐dispersal scenarios in climate change impact modelling

Diversity and Distributions - Tập 19 Số 10 - Trang 1224-1234 - 2013
Brooke L. Bateman1, Helen T. Murphy2, April E. Reside1, Karel Mokany3, Jeremy VanDerWal1
1Centre for Tropical Biodiversity and Climate Change Research, School of Marine and Tropical Biology, James Cook University, Townsville, Qld, 4811, Australia.
2CSIRO Ecosystem Sciences and Climate Adaptation Flagship PO Box 780 Atherton Qld 4883 Australia
3CSIRO Ecosystem Sciences, Climate Adaptation Flagship PO Box 1700 Canberra ACT 2601 Australia

Tóm tắt

AbstractAimSpecies distribution models (SDMs) generally use correlative relationships between the species location and the associated environment to project the species potential distribution under climate change. While projecting a future suitable climatic space is relatively simple using SDMs, predicting a species ability to occupy that space relies on understanding dispersal capacity; a lack of knowledge about species‐specific dispersal ability, varying geographical contexts and technical constraints of simple SDMs has limited the consideration of dispersal in most studies. We review the current treatment of dispersal in SDM studies addressing the effects of climate change and explore how incorporating ‘partial‐dispersal’ scenarios could lead to more realistic projections of species distributions into the future.LocationGlobal.MethodsWe consider the implications for projected distributions of incorporating full‐ and no‐dispersal scenarios in SDMs and identify a range of methods and their associated information needs for implementing partial‐dispersal scenarios.ResultsWhile simplistic and easy to implement, full‐ and no‐dispersal scenarios are only realistic in a few situations. Although implementing partial‐dispersal scenarios may require information that is lacking for many species, we argue that even relatively simple partial‐dispersal models, with fairly basic knowledge needs, improve projections of altered distributions under climate change. More complex models, using more sophisticated modelling approaches, have been tested in a few cases and provide robust projections.Main ConclusionsWhile climate change SDM outputs have proved useful, we highlight that careful selection of dispersal scenarios, relevant to the particular questions being addressed, is necessary for appropriate interpretation of the model outputs when projecting into novel environments (e.g. future climates). A number of methods have been developed for incorporating partial‐dispersal scenarios in SDMs; however, the data and computation requirements currently limit their application to large numbers of species, highlighting the need for other techniques and generic user‐friendly modelling platforms.

Từ khóa


Tài liệu tham khảo

10.1098/rspb.2008.1681

10.1111/j.1365-2486.2012.02683.x

10.1111/j.1461-0248.2011.01620.x

10.1111/j.1365-2699.2006.01584.x

10.1111/j.2005.0906-7590.04253.x

10.1111/j.1365-2486.2004.00828.x

10.1111/j.1365-2486.2005.01000.x

10.1111/j.1365-2699.2006.01482.x

10.1111/j.1365-2486.2011.02552.x

10.1016/j.biocon.2009.12.013

10.1111/j.1472-4642.2012.00922.x

10.1111/j.1365-2486.2009.02014.x

10.1016/S0006-3207(98)00140-2

10.1016/0006-3207(94)00016-J

10.1098/rsbl.2009.0480

Brown S., 2001, The U.S. shorebird conservation plan

10.1016/j.biocon.2006.05.020

10.1126/science.1206432

10.1023/A:1020262317539

10.1890/01-0618

10.1111/j.1466-8238.2009.00485.x

10.1890/1051-0761(2000)010[0131:IOHFAP]2.0.CO;2

10.1371/journal.pone.0036391

10.1111/gcb.12090

Conway C.J.. (2008).Standardized North American Marsh Bird Monitoring Protocols Wildlife Research Report #2008‐01. U.S. Geological Survey Arizona Cooperative Fish and Wildlife Research Unit Tucson AZ.

10.1126/science.292.5517.673

10.1007/s00442-006-0475-3

10.1079/9781845931650.0201

10.1038/nclimate1347

10.1111/j.1365-2486.2010.02266.x

10.1038/nclimate1514

10.1146/annurev.ecolsys.110308.120159

10.1111/j.1472-4642.2009.00566.x

10.1111/j.1600-0587.2012.07608.x

10.2307/1370481

10.1111/j.1466-8238.2007.00287.x

10.1007/s10531-009-9584-8

10.1111/j.1365-2486.2008.01559.x

10.1111/j.1365-2486.2011.02614.x

10.1111/j.1472-4642.2010.00641.x

10.1146/annurev.ecolsys.39.110707.173529

10.1111/j.1600-0587.2010.06430.x

10.1111/j.1461-0248.2005.00792.x

10.1046/j.1466-822X.2002.00306.x

10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2

10.1111/j.1523-1739.2008.00951.x

10.1111/j.1365-2486.2006.01256.x

10.1126/science.1157897

10.1111/j.1442-9993.2010.02143.x

10.1007/s10113-010-0158-9

10.1111/j.1474-919X.1995.tb08433.x

10.2307/2845307

10.1111/j.1474-919X.2006.00523.x

10.1111/j.1600-0587.2009.06023.x

10.1111/j.1466-822X.2004.00093.x

10.1371/journal.pbio.0050157

10.1111/j.1472-4642.2008.00496.x

10.1111/j.1461-0248.2008.01277.x

10.1111/j.1755-263X.2010.00097.x

10.1098/rsbl.2008.0049

10.1111/j.1469-185X.2011.00179.x

10.1016/j.tree.2011.08.001

10.1016/S0006-3207(96)00164-4

10.1111/j.1365-2486.2009.02143.x

10.1038/nature08649

10.1111/j.1523-1739.2003.00233.x

10.1016/j.biocon.2012.04.004

10.1111/j.1523-1739.2009.01258.x

10.1126/science.282.5395.1884

10.17161/bi.v2i0.8

10.1111/j.1365-2486.2007.01514.x

Mattoni R., 1997, The endangered quino checkerspot butterfly, Euphydryas editha quino (Lepidoptera: Nymphalidae), Journal of Research on the Lepidoptera, 34, 99, 10.5962/p.266563

10.1023/A:1017987929824

10.1016/j.biocon.2011.09.018

10.1111/j.1523-1739.2007.00676.x

10.1111/j.1466-8238.2011.00669.x

10.1098/rspb.2006.3484

10.1111/j.1366-9516.2006.00273.x

10.1111/j.1600-0587.2009.06000.x

10.1890/08-0134.1

10.1111/j.1466-822X.2006.00194.x

10.1007/s10530-008-9246-x

10.1046/j.1365-2745.2003.00781.x

Niemiller M.L., 2010, Conservation status and habitat use of the West Virginia Spring Salamander (Gyrinophilus subterraneus) and Spring Salamander (G. porphyriticus) in General Davis Cave, Greenbrier Co West Virginia, Herpetological Conservation and Biology, 5, 32

10.1111/j.1752-1688.1999.tb04228.x

10.1111/j.0014-3820.2006.tb01872.x

10.1038/nature01286

10.1016/j.tree.2005.11.022

10.1046/j.1466-822X.2003.00042.x

10.1111/j.1365-2699.2006.01460.x

10.1046/j.1365-2486.2003.00616.x

10.1038/416626a

Pitelka L.F., 1997, Plant migration and climate change, American Scientist, 85, 464

10.1038/nature02205

10.1111/j.1365-2486.2011.02586.x

10.1002/ece3.197

10.1111/j.1466-8238.2010.00636.x

10.2193/2009-446

Russell A.P., 2005, Migration in amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. Migration of Organisms), 151

10.1111/j.1365-2656.2011.01909.x

10.1111/j.1365-2486.2010.02218.x

10.5751/ES-03089-150108

10.1111/j.1365-2699.2009.02227.x

10.1023/A:1005441608819

10.1007/s00360-009-0415-8

10.3354/cr00718

10.5751/ES-00184-040116

10.1038/nature02121

10.1111/j.1365-2745.2011.01867.x

10.1073/pnas.0409902102

10.1111/j.1365-2486.2005.001018.x

10.1016/j.ppees.2007.09.004

10.1073/pnas.0901562106

10.1086/600087

10.1038/nclimate1688

10.1038/416389a

10.1017/CBO9780511541919

10.1111/j.1523-1739.2005.00080.x

10.1890/09-1069.1

10.1111/j.1755-263X.2008.00043.x