Applications of multivariate visualization to behavioral sciences
Tóm tắt
The complexity of psychological science often requires the collection and analysis of multidimensional data. Such data bring about a corresponding cognitive load that has led scientists to develop techniques of scientific visualization to ease the burden. This paper provides an introduction to scientific visualization techniques, a framework for understanding those techniques, and an assessment of the suitability of this approach for psychology. The framework employed builds on the notion of balancingnoise andsmooth in statistical analysis.
Tài liệu tham khảo
Aiken, L. S., &West, S. G. (1991).Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.
Aiken, L. S., West, S. G., Sechrest, L., &Reno, R. R. (1990). Graduate training in statistics, methodology, and measurement in psychology: A survey of Ph.D. programs in North America.American Psychologist,45, 721–734.
Anderson, E. (1960). A semigraphical method for the analysis of complex problems.Technometrics,2, 387–391.
Behrens, J. T., &Yu, C. H. (1994, June).The visualization of multiway interactions and high-order terms in multiple regression. Paper presented at the meeting of the Psychometric Society, Urbana-Champaign, IL.
Bertin, J. (1983).Semiology of graphics. Madison: University of Wisconsin Press.
Bowman, A. W., &Foster, P. J. (1993). Adaptive smoothing and density-based tests of multivariate normality.Journal of the American Statistical Association,88, 529–537.
Butler, D. L. (1993). Graphics in psychology: Pictures, data, and especially concepts.Behavior Research Methods, Instruments, & Computers,25, 81–92.
Carr, D. B. (1991). Looking at large data sets using binned data plots. In A. Buja & P. A. Tukey (Eds.),Computing and graphics in statistics (pp. 5–39). New York: Springer-Verlag.
Carr, D. B., &Nicholson, W. L. (1988). Explor4: A program for exploring four-dimensional data using stereo-ray glyphs, dimensional constraints, rotation, and masking. In W. S. Cleveland & M. E. McGill (Eds.),Dynamic graphics for statistics (pp. 309–329). Belmont, CA: Wadsworth.
Cleveland, W. S. (1993).Visualizing data. Murray Hill, NJ: AT&T Bell Lab.
Encarnacao, J., Foley, J., Bryson, S., Feiner, S. K., &Gershon, N. (1994). Research issues in perception and user interface.IEEE Computer Graphics & Applications,14, 67–69.
Hardle, W. (1991).Smoothing techniques: With implementation in S. New York: Springer-Verlag.
Hesselink, L., Post, F. H., &Wijk, J. J. (1994). Research issues in vector and tensor field visualization.IEEE Computer Graphics & Applications,14, 76–79.
Kaufman, A., Hohne, K. H., Kruger, W., Rosenblum, L., &Schroder, P. (1994). Research issues in volume visualization.IEEE Computer Graphics & Applications,14, 63–66.
Keller, P. R., &Keller, M. M. (1993).Visual cues: Practical data visualization. New Jersey: IEEE Press.
Lewandowsky, S., Herrmann, D. J., Behrens, J. T., Li, S. C., Pickle, L., &Jobe, J. B. (1993). Perceptions of clusters in statistical maps.Applied Cognitive Psychology,7, 533–551.
Mihalisin, T., Timlin, J., &Schwegler, J. (1991). Visualization and analysis of multivariate data: A technique for all fields. In G. M. Nielsen & L. Rosenblum (Eds.)Proceedings of 1991 IEEE Visualization Conference (pp. 171–178). Los Alamitos, CA: IEEE.
Nadaraya, E. A. (1965). On non-parametric estimation of density functions and regressions curves.Theory of Probability & Its Application,10, 186–190.
Scott, D. W. (1992).Multivariate density estimation: Theory, practice, and visualization. New York: Wiley.
Silverman, B. W. (1986).Density estimation for statistics and data analysis. London: Chapman & Hall.
Statistical Sciences (1993).S-Plus for Windows. Seattle, WA: Author.
Tukey, J. W. (1977).Exploratory data analysis. Reading, MA: Addison-Wesley.
Wolfram, S. (1991).Mathematica: A system for doing mathematics by computer. Reading, MA: Addison-Wesley.