Applications of integral equations in particle-size statistics

Journal of Optimization Theory and Applications - Tập 24 - Trang 207-220 - 1978
A. Goldman1, W. Visscher2
1Department of Mathematics, University of Nevada at Las Vegas, Las Vegas
2T-11, Theoretical Division, Los Alamos Scientific Laboratory, Los Alamos

Tóm tắt

We discuss the application of integral equations techniques to two broad areas of particle statistics, namely, stereology and packing. Problems in stereology lead to the inversion of Abel-type integral equations; and we present a brief survey of existing methods, analytical and numerical, for doing this. Packing problems lead to Volterra equations which, in simple cases, can be solved exactly and, in other cases, need to be solved numerically. Methods for doing this are presented along with some numerical results.

Tài liệu tham khảo

Elias, H.,Steriologia, Vol. 1, Editorial, p. 1, 1962.

Wicksell, S. D.,The Corpuscle Problem, Biometrika, Vol. 17, pp. 84–89, 1925.

Kendall, M. G., andMoran, P. A. P.,Geometrical Probability, Hafner Publishing Company, New York, New York, 1963.

Scheil, E.,Die Berechnung der Anzahl and Grossenverteilung Kugelformiger Korpern mit Hilfe der Durch Abenen Schnitt Erhaltenen Schnitt Kreise, Zeitschrift für Anorganische und Allgemeine Chemie, Vol. 201, pp. 259–264, 1931.

Courant, R., andHilbert, D.,Methods of Mathematical Physics, Vol. 1, John Wiley and Sons (Interscience Publishers), New York, New York, 1953.

Anderssen, R. S., andJakeman, A. J.,Abel-Type Integral Equations in Stereology, Journal of Microscopy, Vol. 105, pp. 121–153, 1975.

Einarrson, B.,Numerical Solution of Abel's Integral Equation with Spline Functions, Forsvarets Forskning Sanstalt, Report No. 1-C2455-11(25), 1971.

Jakeman, A. J.,The Numerical Inversion of Abel-Type Integral Equations, Australian National University, PhD Thesis, 1975.

Anderssen, R. S., andJakeman, A. J.,Product Integration for Functionals of Particle Size Distributions, Utilitas Mathematica, Vol. 8, pp. 111–126, 1975.

Anderssen, R. S., andJakeman, A. J.,On Computational Stereology, Proceedings of the 6th Australian Computer Conference, Sydney, Australia, 1974.

Dehoff, R. T.,The Estimation of Particle Distribution from Simple Counting Measurements Made on Random Plane Sections, Transactions of the Metallurgical Society, AIME, Vol. 233, pp. 25–29, 1965.

Wiggins, A., Unpublished Report, 1976.

Watson, G. S.,Estimating Functions of Particle Size Distributions, Biometrika, Vol. 58, pp. 483–490, 1971.

Goldsmith, P. L.,Calculation of True Particle Size Distributions from Sizes Observed in a Thin Slice, British Journal of Applied Physics, Vol. 18, pp. 813–830, 1967.

Hilliard, J. E.,The Counting and Sizing of Particles in Transmission Microscopy, Transactions of the Metallurgical Society of AIME, Vol. 224, pp. 906–917, 1962.

Underwood, E. E.,The Mathematical Foundations of Quantitative Stereology; Stereology and Quantitative Metallography, Special Technical Publication No. 504, ASTM, Philadelphia, Pennsylvania, 1972.

Renyi, A.,On a One-Dimensional Problem Concerning Space Filling, Publications of the Mathematical Institute of the Hungarian Academy of Sciences, Vol. 3, pp. 109–127, 1958.

Mannion, D.,Random Space Filling in One Dimension, Publications of the Mathematical Institute of the Hungarian Academy of Sciences, Vol. 9, pp. 143–154, 1964.

Goldman, A., Lewis, H. D., andVisscher, W. M.,Random Packing Model, Technometrics, Vol. 16, pp. 301–309, 1974.