Applications of Modern Ferroelectrics

American Association for the Advancement of Science (AAAS) - Tập 315 Số 5814 - Trang 954-959 - 2007
J. F. Scott1
1Centre for Ferroics, Earth Sciences Department, University of Cambridge, Cambridge CB2 3EQ, UK.

Tóm tắt

Long viewed as a topic in classical physics, ferroelectricity can be described by a quantum mechanical ab initio theory. Thin-film nanoscale device structures integrated onto Si chips have made inroads into the semiconductor industry. Recent prototype applications include ultrafast switching, cheap room-temperature magnetic-field detectors, piezoelectric nanotubes for microfluidic systems, electrocaloric coolers for computers, phased-array radar, and three-dimensional trenched capacitors for dynamic random access memories. Terabit-per-square-inch ferroelectric arrays of lead zirconate titanate have been reported on Pt nanowire interconnects and nanorings with 5-nanometer diameters. Finally, electron emission from ferroelectrics yields cheap, high-power microwave devices and miniature x-ray and neutron sources.

Từ khóa


Tài liệu tham khảo

A. von Hippel “U.S. National Defense Research Committee Report 300” (NDRC Boston MA 1944).

M. E. Lines A. M. Glass Principles and Applications of Ferroelectrics and Related Materials (Clarendon Oxford 1977).

Hence the fashionable question “Why are there so few magnetic ferroelectrics” cannot have an answer limited to d 0 -orbitals in transition-metal oxides ( 47 ).

Abrahams ( 48 ) indicates that several families of d-electron transition-metal fluorides are probably ferroelectric ferromagnets.

10.1126/science.246.4936.1400

J. F. Scott Ferroelectric Memories (Springer Heidelberg Germany 2000).

M. Fiebig, J. Phys. D38, R123 (2005).

W. Eerenstein, N. D. Mathur, J. F. Scott, Nature442, 759 (2006).

C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, J. F. Scott, Nature374, 627 (1995).

C. Kittel, Phys. Rev.70, 965 (1946).

G. Catalan, Appl. Phys. Lett.88, 102902 (2006).

V. A. Stephanovich, I. A. Lukyanchuk, M. G. Karkut, Phys. Rev. Lett.94, 047601 (2005).

10.1126/science.1094207

P. Paruch, T. Giamarchi, J.-M. Triscone, Phys. Rev. Lett.94, 197601 (2005).

R. Pollard et al. personal communication.

M. M. Saad et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control53, 2208 (2006).

X. H. Zhu et al., Appl. Phys. Lett.89, 129913 (2006).

M. Dawber, I. Szafraniak, M. Alexe, J. F. Scott, J. Phys. Condens. Mat.15, L667 (2003).

M. Tanaka, Y. Makino, Ferroelectr. Lett.24, 13 (1998).

F. D. Morrison, L. Ramsay, J. F. Scott, J. Phys. Condens. Mat.15, L527 (2003).

D. L. Fox, J. F. Scott, J. Phys. C10, L329 (1977).

C. Ederer, N. Spaldin, Phys. Rev. B74, 020401 (2006).

10.1038/nature03348

N. D. Mermin, Rev. Mod. Phys.51, 591 (1979).

R. J. Harrison, R. E. Dunin-Borkowski, A. Putnis, Proc. Natl. Acad. Sci. U.S.A.99, 16556 (2002).

10.1103/RevModPhys.77.1083

X. Wu, D. Vanderbilt, D. R. Hamann, Phys. Rev. B72, 035105 (2005).

10.1103/PhysRevLett.80.1988

O. Diéguez, K. M. Rabe, D. Vanderbilt, Phys. Rev. B72, 144101 (2005).

Y. L. Li et al., Phys. Rev. B73, 184112 (2006).

M. Dawber, P. Chandra, P. B. Littlewood, J. F. Scott, J. Phys. Condens. Mat.15, L393 (2003).

10.1038/nature01501

O. Auciello, J. Appl. Phys.100, 051614 (2006).

X. Lou, M. Zhang, S. A. T. Redfern, J. F. Scott, Phys. Rev. Lett.97, 177601 (2006).

M. Dawber et al., Phys. Rev. Lett.95, 177601 (2005).

A. Q. Jiang, J. F. Scott, H. Lu, Z. Chen, J. Appl. Phys.93, 1180 (2003).

K. Johnston, X. Huang, J. B. Neaton, K. M. Rabe, Phys. Rev. B71, 100103 (2005).

D. Walker et al., J. Phys. D Appl. Phys.38, A55 (2005).

M. M. Saad et al., J. Phys. Condens. Mat.16, L451 (2004).

10.1126/science.1123811

H. W. Gundel, Ferroelectrics184, 89 (1996).

D. C. Kim, W. Jo, H. M. Lee, K. Y. Kim, Integ. Ferroelectr.18, 137 (1997).

B. Naranjo, J. K. Gimzewski, S. Putterman, Nature434, 1115 (2005).

A. D. Milliken A. J. Bell J. F. Scott Appl. Phys. Lett. in press.

A. L. Morales-Cruz et al., Integ. Ferroelectr.77, 51 (2005).

T. Ami et al., Integ. Ferroelectr.14, 95 (1997).

N. Hill, J. Chem. Phys. B104, 6694 (2000).

S. C. Abrahams, Acta Crystallogr.B55, 494 (1999).

G. Catalan, J. F. Scott, A. Schilling, J. M. Gregg, J. Phys. Condens. Matter19, 022201 (2007).

M. Dawber N. Stucki C. Lichtensteiger J.-M. Triscone personal communication.

N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev, Ferroelectrics223, 79 (1999).

J. F. Scott, J. Phys. Condens. Mat.18, R361 (2006).

K. Kawano, H. Kosuge, N. Oshima, H. Funakubo, Electrochem. Sol. St. Lett.9, C175 (2006).

M. Alexe, C. Harnagea, D. Hesse, U. Gösele, Appl. Phys. Lett.79, 242 (2001).