Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer

Current Oncology - Tập 29 Số 3 - Trang 1773-1795
Hang Qiu1,2, Shuhan Ding3, Jianbo Liu4,5, Liya Wang1, Xiaodong Wang4,5
1Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
2School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
3School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
4Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
5West China School of Medicine, Sichuan University, Chengdu 610041, China

Tóm tắt

Colorectal cancer (CRC) is one of the most common cancers worldwide. Accurate early detection and diagnosis, comprehensive assessment of treatment response, and precise prediction of prognosis are essential to improve the patients’ survival rate. In recent years, due to the explosion of clinical and omics data, and groundbreaking research in machine learning, artificial intelligence (AI) has shown a great application potential in clinical field of CRC, providing new auxiliary approaches for clinicians to identify high-risk patients, select precise and personalized treatment plans, as well as to predict prognoses. This review comprehensively analyzes and summarizes the research progress and clinical application value of AI technologies in CRC screening, diagnosis, treatment, and prognosis, demonstrating the current status of the AI in the main clinical stages. The limitations, challenges, and future perspectives in the clinical implementation of AI are also discussed.

Từ khóa


Tài liệu tham khảo

10.3322/caac.21660

10.1136/gutjnl-2015-310912

10.3390/cancers12030603

10.1016/j.gie.2020.04.074

10.3390/jcm9103313

10.1016/j.compbiomed.2020.104003

10.3760/cma.j.cn.441530-20200213-00054

Moor, 2006, The Dartmouth College Artificial Intelligence Conference: The next Fifty Years, AI Magazine, 27, 87

10.1016/j.canlet.2019.12.007

10.3390/jpm11010032

10.1016/j.compbiomed.2020.104095

10.1016/j.artmed.2018.06.002

10.3390/cancers12123532

10.3389/fonc.2020.588221

10.3322/caac.21654

10.1016/j.genrep.2021.101419

10.1186/s12911-020-01314-8

Pan, 2021, Screening and Diagnosis of Colorectal Cancer and Advanced Adenoma by Bionic Glycome Method and Machine Learning, Am. J. Cancer Res., 31, 3002

10.1016/j.jss.2019.08.004

10.1177/1756284820910659

10.48550/arXiv.2002.02883

10.1109/JBHI.2019.2907434

10.1053/j.gastro.2018.06.037

10.1109/EMBC.2018.8512197

10.1371/journal.pone.0207848

10.1109/JBHI.2016.2635662

10.1007/s10620-017-4722-8

10.1371/journal.pone.0171759

10.1055/s-0042-108434

10.1093/jamia/ocv195

10.1016/j.gie.2011.08.051

10.3748/wjg.v23.i28.5086

10.1111/j.1572-0241.2006.00390.x

10.1053/j.gastro.2017.10.010

10.1038/s41598-019-50567-5

10.1101/478065

10.1016/j.ctrv.2019.101894

10.1053/j.gastro.2021.04.078

10.1007/s00216-019-02069-6

10.1007/s00535-021-01789-w

10.1007/s00138-021-01184-8

10.1038/s41598-020-58467-9

10.1016/j.biopha.2019.109228

10.1038/s41591-019-0462-y

10.3892/ol.2019.10928

10.1007/s10278-018-0112-9

10.5220/0006643100580066

10.4103/jpi.jpi_47_16

10.1186/s12859-017-1685-x

10.4103/jpi.jpi_34_17

10.1007/s00330-020-07673-0

10.1007/s12149-021-01605-8

10.1186/s12885-021-08001-5

10.1007/s00261-020-02624-1

10.3390/app10186214

10.1002/ima.22311

10.1097/CM9.0000000000000095

10.1109/ICECDS.2017.8389744

10.1117/12.2255606

10.1371/journal.pone.0154863

10.1007/s11548-014-0991-2

10.1007/s00330-008-0936-7

10.1111/joim.13030

10.1016/j.neucom.2019.10.097

10.1016/j.cmpb.2015.05.008

10.1016/j.cmpb.2019.06.022

10.19538/j.cjps.issn1005-2208.2020.03.08

10.1056/NEJMoa070543

10.1038/s41598-020-71364-5

10.1158/0008-5472.CAN-18-0494

10.21037/qims.2017.02.09

10.3390/cancers13050973

10.26802/jaots.2018.03208

10.3390/cancers12071884

10.1007/s10462-021-10034-y

10.1080/07350015.2019.1624293

10.1111/codi.12869

10.1038/s41598-020-69345-9

10.3389/fonc.2019.00497

10.1016/j.ejmp.2019.03.013

10.1016/j.ejrad.2019.06.013

10.1016/j.jphs.2019.03.004

10.3390/biom8030056

10.1158/1078-0432.CCR-06-0290

10.1001/jamanetworkopen.2018.0926

10.1016/j.mri.2019.05.003

10.1007/s00595-019-01897-4

10.1038/s41598-020-59115-y

10.1016/S1470-2045(11)70299-6

10.1200/JCO.2007.14.1291

10.1016/j.compbiomed.2021.104539

10.1038/s41598-020-67178-0

10.1016/S0140-6736(19)32998-8

10.1371/journal.pmed.1002730

10.1016/j.ins.2018.09.046

10.3233/SHTI190259

10.3390/cancers11122007

10.1177/1460458217720395

10.1038/s41598-018-21758-3

10.5455/aim.2017.25.254-258

10.3233/978-1-61499-538-8-75

10.1371/journal.pone.0200893

10.7544/issn1000-1239.2020.20190485

10.1016/j.artmed.2020.101814

10.1136/esmoopen-2019-000518

10.1002/rcs.1841