Application of system dynamics modeling for evaluation of different recycling scenarios in Singapore

Journal of Material Cycles and Waste Management - Tập 19 - Trang 1177-1185 - 2016
Apostolos Giannis1, Miaoju Chen1, Ke Yin1, Huanhuan Tong1, Andrei Veksha1
1Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore

Tóm tắt

The influence of socioeconomic factors, such as population and rapid economic growth, and the change of consumption and living patterns make waste management in Singapore, a complex issue. Due to limited land and resources, the solid waste management scheme requires a comprehensive approach. Therefore, system dynamics (SD) modeling was applied to assess alternative strategies for solid waste management by interconnecting landfill capacity and recycling efficiency with reference to the projection on waste generation. Nine different scenarios were investigated to identify the best approach to maintain environmental sustainability without inhibiting the economic growth. Four subsystems (i.e., population, economy, waste recycling, and waste disposal) have been incorporated into the SD model to broaden the effectiveness of the waste management system. Research findings revealed that a high economic pattern and a high recycling rate are recommended to satisfy the requirements for economic growth and environmental sustainability while extending landfill capacity for waste disposal. Even though the balance of expenditure could be increased by the high recycling rate, it meets the need for long-term incineration and landfill planning.

Tài liệu tham khảo

Department of Statistics (2012) Yearbook of statistics. Ministry of Trade and Industry, Singapore National Environment Agency (NEA) (2012) Annual report. Environmental Protection Division, Singapore Kollikkathara N, Feng H, Yu D (2010) A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues. Waste Manag 30:2194–2203 Dyson B, Chang NB (2005) Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste Manag 25:669–679 Zhang D, Keat TS, Gersberg RM (2010) A comparison of municipal solid waste management in Berlin and Singapore. Waste Manag 30:921–933 Chaerul M, Tanaka M, Shekdar A (2008) A system dynamics approach for hospital waste management. Waste Manag 28:442–449 Gregoriades A, Karakostas B (2004) Unifying business objects and system dynamics as a paradigm for developing decision support systems. Decis Support Syst 37:307–311 Saysel AK, Barlas Y (2001) A dynamic model of salinization on irrigated lands. Ecol Model 139:177–199 Shi T, Gill R (2005) Developing effective policies for the sustainable development of ecological agriculture in China: the case study of Jinshan County with a systems dynamics model. Ecol Econ 53:223–246 Wei S, Yang H, Song J, Abbaspour KC, Xu Z (2012) System dynamics simulation model for assessing socio-economic impacts of different levels of environmental flow allocation in the Weihe River Basin, China. Eur J Oper Res 221:248–262 Li FJ, Dong SC, Li F (2012) A system dynamics model for analyzing the eco-agriculture system with policy recommendations. Ecol Model 227:34–45 Thompson BP, Bank LC (2010) Use of system dynamics as a decision-making tool in building design and operation. Build Environ 45:1006–1015 Karavezyris V, Timpe KP, Marzi R (2002) Application of system dynamics and fuzzy logic to forecasting of municipal solid waste. Math Comput Simul 60:149–158 Guneralp B, Barlas Y (2003) Dynamic modelling of a shallow freshwater lake for ecological and economic sustainability. Ecol Model 167:115–138 Stave KA (2003) A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. J Environ Manag 67:303–313 Anand S, Vrat P, Dahiya RP (2006) Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. J Environ Manag 79:383–398 Guan D, Gao W, Su W, Li H, Hokao K (2011) Modeling and dynamic assessment of urban economy–resource–environment system with a coupled system dynamics—geographic information system model. Ecol Indic 11:1333–1344 Rehan R, Knight MA, Hass CT, Unger AJA (2011) Application of system dynamics for developing financially self-sustaining management policies for water and wastewater system. Water Res 45:4737–4750 Long F, Song B, Wang QH, Xia XF, Xue LL (2012) Scenarios simulation on municipal plastic waste generation of different functional areas of Beijing. J Mater Cycles Waste 14:250–258 Singapore Green Plan (SGP) (2012) Ministry of the Environment and Water Resources, Singapore Mohapatra PKJ, Mandal P, Bora MC (1994) Introduction to system dynamics modeling. Orient Longman, Hyderabad Bai R, Sutanto M (2002) The practice and challenges of solid waste management in Singapore. Waste Manag 22:557–567 Zhao W, Ren H, Rotter VA (2011) A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center—the case of Chongqing, China. Resour Conserv Recyl 55:933–944 Dace E, Bazbauers G, Berzina A, Davidsen PI (2014) System dynamics model for analyzing effects of eco-design policy on packaging waste management system. Resour Conserv Recyl 87:175–190