Application of surface enhanced Raman spectroscopy for analyses of restricted sulfa drugs

Keqiang Lai1, Fuli Zhai1, Yuanyuan Zhang1, Xichang Wang1, Barbara A. Rasco2, Yiqun Huang1
1College of Food Science and Technology, Shanghai Ocean University, Lingang New City, People’s Republic of China
2School of Food Science, Washington State University, Pullman, USA

Tóm tắt

The presence of sulfonamide residues in muscle foods is an important concern for consumers and regulatory agencies since these residues may pose potential health risks and result in an increase of drug-resistant bacteria. Surface enhanced Raman spectroscopy (SERS) was applied to analyze three sulfa drugs including sulfamerazine, sulfamethazine and sulfamethoxazole with concentrations ranging from 10 ng mL−1 to 5 μg mL−1. Partial least squares regression (PLS) and principal component analysis (PCA) were used for the spectral data analyses. The three sulfa drugs could be detected at concentration levels as low as 10 ng mL−1. For the quantitative analyses, the R 2 values of actual sulfa drug concentrations versus their concentrations predicted by the PLS models ranged from 0.8149 to 0.9009. Plotting of principal components based upon PCA showed clear, separated clusters between different sulfonamides. This study indicated potential for detection and determination of trace amounts of prohibited or restricted drugs with SERS technology.

Tài liệu tham khảo

S. Bogialli, R. Curini, A.D. Corcla, M. Nazzari, R. Samperi, Anal. Chem. 1798, 75 (2003) Specification for the application of sulfonamides in aquaculture, The Ministry of Agriculture, PR China, SC/T 1084-2006 N.A. Littlefield, W.G. Sheldon, R. Allen, D.W. Gaylor, Food Chem. Toxicol. 157, 28 (1990) D.R. Doerge, C.J. Decker, Chem. Res. Toxicol. 164, 7 (1994) European Commission, Council Directive 178/2002, Off. J. Eur. Commun. L031, 1 (2002) Establishment of maximum reside levels of veterinary medical products in foodstuffs of animal origin, The Ministry of Agriculture, PR China, Regulation No. 235 (2002) I. Pecorelli, R. Bibi, F. Fioroni, R. Galarini, J. Chromatogr. A 23, 1032 (2004) T.A.M. Msagati, M.M. Hindi, Talanta 87, 64 (2004) R.J. Stokes, A. Ingram, J. Gallagher, D.R. Armstrong, W.E. Smith, D. Graham, Chem. Commun. 567, 5 (2008) N. Rodrígueza, M.C. Ortiza, L.A. Sarabiab, A. Herreroa, Anal. Chim. Acta 136, 657 (2010) L. He, M. Lin, H. Li, N. Kim, J. Raman Spectrosc. 739, 41 (2010) X. Zhang, N. Shah, R. Van Duyne, Vib. Spectrosc. 2, 42 (2006) C. Haynes, A. McFarland, R. Van Duyne, Anal. Chem. 338, 77 (2005) M. Lin, L. He, J. Awika, L. Yang, D.R. Ledoux, H. Li, A. Mustapha, J. Food Sci. 129, 73 (2008) B. Liu, M. Lin, H. Li, Sens. Instrum. Food Qual. 4, 13 (2010) T.A. Alexander, Anal. Chem. 2817, 80 (2008) N. Perney, J. Baumberg, M. Zoorob, M. Charlton, S. Mahnkopf, C. Netti, Opt. Express 847, 14 (2006) A. Szeghalmi, S. Kaminskyj, P. Rosch, J. Popp, K.M. Gough, J. Phys. Chem. B 12916, 111 (2007) L. He, Y. Liu, M. Lin, J. Awika, D.R. Ledoux, H. Li, A. Mustapha, Sens. & Instrumen. Food Qual. 66, 2 (2008) Y. Huang, A.G. Cavinato, D.M. Mayes, G.E. Bledsoe, B.A. Rasco, J. Food Sci. 2543, 67 (2002) Y. Huang, A.G. Cavinato, J. Tang, B.G. Swanson, M. Lin, B.A. Rasco, LWT Food Sci. Technol. 1018, 40 (2007) W.S. Sutherlank, J.J. Laserna, M.J. Angebranndt, J.D. Winefordner, Anal. Chem. 689, 62 (1990) X. Cao, C. Sun, T.J. Thamann, J. Pharm. Sci. 1881, 94 (2005) C.A. Topacli, J. Topacli, J. Mol. Struct. 145, 644 (2003) H. Zhu, Spectral Analysis of Organic Molecular Structure. Chapter 2 (Chemical Industry Press, Beijing, 2005), p. 42 J.R. Lombardi, R.A. Birke, Acc. Chem. Res. 734, 42 (2009) S.E.J. Bell, N.M.S. Sirimuthu, Chem. Soc. Rev. 1012, 37 (2008) D. Sajan, G.D. Sockalingum, M. Manfait, I. Hubert Joe, V.S. Jayakumar, J. Raman Spectrosc. 1772, 39 (2008) W.E. Smith, Chem. Soc. Rev. 955, 37 (2008)