Application of semiempirical long‐range dispersion corrections to periodic systems in density functional theory

Journal of Computational Chemistry - Tập 29 Số 13 - Trang 2088-2097 - 2008
Torsten Kerber1, Marek Sierka1, Joachim Sauer1
1Institut für Chemie, Humboldt Universität zu Berlin, Unter den Linden 6, D-10099 Berlin

Tóm tắt

AbstractEwald summation is used to apply semiempirical long‐range dispersion corrections (Grimme, J Comput Chem 2006, 27, 1787; 2004, 25, 1463) to periodic systems in density functional theory. Using the parameters determined before for molecules and the Perdew‐Burke‐Ernzerhof functional, structure parameters and binding energies for solid methane, graphite, and vanadium pentoxide are determined in close agreement with observed values. For methane, a lattice constant a of 580 pm and a sublimation energy of 11 kJ mol−1 are calculated. For the layered solids graphite and vanadia, the interlayer distances are 320 pm and 450 pm, respectively, whereas the graphite interlayer energy is −5.5 kJ mol−1 per carbon atom and layer. Only when adding the semiempirical dispersion corrections, realistic values are obtained for the energies of adsorption of C4 alkenes in microporous silica (−66 to −73 kJ mol−1) and the adsorption and chemisorption (alkoxide formation) of isobutene on acidic sites in the micropores of zeolite ferrierite (−78 to −94 kJ mol−1). As expected, errors due to missing self‐interaction correction as in the energy for the proton transfer from the acidic site to the alkene forming a carbenium ion are not affected by the dispersion term. The adsorption and reaction energies are compared with the results from Møller‐Plesset second‐order perturbation theory with basis set extrapolation. © 2008 Wiley Periodicals, Inc. J Comput Chem 2008

Từ khóa


Tài liệu tham khảo

10.1021/jp970586k

10.1063/1.475105

10.1021/ct0502763

10.1021/jp053905d

10.1103/PhysRevLett.96.146107

10.1039/B310529F

10.1103/PhysRevLett.91.033201

10.1063/1.473555

10.1002/jcc.20495

10.1002/jcc.20078

10.1016/0009-2614(75)80278-8

10.1016/0301-0104(77)85124-0

10.1039/B615319B

10.1021/jp0720791

10.1002/andp.19213690304

10.1103/PhysRevB.73.205101

10.1103/PhysRevLett.77.3865

10.1021/j100358a012

10.1039/a701492i

10.1002/1096-987X(200012)21:16<1470::AID-JCC5>3.0.CO;2-L

10.1063/1.481296

10.1103/PhysRevB.48.13115

10.1103/PhysRevB.54.11169

10.1103/PhysRevB.59.1758

10.1103/PhysRevB.50.17953

10.1103/PhysRevB.13.5188

10.1016/0009-2614(89)85118-8

10.1002/jcc.540100111

10.1063/1.469408

10.1063/1.467146

10.1063/1.1627293

10.1063/1.1564061

10.1039/b515355g

10.1016/0009-2614(95)00838-U

10.1007/s002140050244

10.1016/S0009-2614(98)00862-8

10.1063/1.1445115

10.1063/1.456153

10.1080/00268977000101561

10.1007/s00214-005-0635-2

10.1063/1.473863

10.1021/ct700026d

J. S. Chickos NIST Chemistry WebBook NIST Standard Reference Database Number 69 P. J. Linstrom W. G. Mallard 2005 National Institute of Standards and Technology Gaithersburg MD 20899

Bolshutkin D. N., 1971, Zh Strukt Khim, 12, 734

Greenwood N. N., 1984, Chemistry of the Elements

10.1103/PhysRevB.69.155406

10.1103/PhysRevB.70.045422

10.1107/S0108270186091825

10.1002/047086334X

10.1103/PhysRevB.74.235401

10.1021/jp0746446

10.1021/jp075809d

10.1016/j.jcat.2005.01.035

10.1021/j100055a032

10.1021/jp994169e

10.1016/S1381-1169(96)00480-3

10.1016/0144-2449(83)90192-6

10.1039/B608262A

10.1002/anie.200501002

10.1002/ange.200501002

10.1039/a904357h

10.1021/ct049851d