Application of geothermometric and hydrochemical methods to the investigation of thermal water of sources in the Northeastern of Algeria case of Setif city

Springer Science and Business Media LLC - Tập 8 - Trang 69-78 - 2022
Djemmal Samir1, Chamekh Khemissi1
1Algerian Association of Hydrogeology (AAH), El Hadj Lakhdar Univerity, Batna 2, Fesdis, Algeria

Tóm tắt

Thermal water in northeastern Algeria (Setif) is a promising, sustainable resource of energy. To date, thermal water has not been used as a source of renewable energy in Algeria as no clear strategy has yet been developed for its use. In this study, eight samples of thermal water springs distributed within the area of Setif city were assessed, and their physical and chemical parameters (such as temperature, potential of hydrogen, electrical conductivity, and major ionic composition, including the K+, Na+, Ca2+, Mg2+, Cl−, SO42− and HCO3−) were measured. The results show that the temperature, potential of hydrogen and the electrical conductivity range between 30 and 52 °C (as measured in field), 6.92 and 7.35, and 1170 and 3160 µS/cm, respectively. Furthermore, the results indicate the existence of four hydrogeochemical facies dominating the hydrogeological system, which are SO4–Ca, Na–SO4, HCO3–Na and Cl–Na. The interaction with Jurassic limestone and the existence of evaporates along the upwelling system, respectively, control this. Due to the high variation of temperature, different geothermometers were used to estimate the geothermal reservoir temperature, the application of silica geothermometer (Quartz), because it is the most suitable in our case, gives temperatures estimated at the origin of the order of 80° C. It is higher than that measured at emergence, it reflects an average dissipation of 48° C. According to an analysis of these findings and the geothermal gradient in the area, two aquifer systems of the thermal complex are supplied by a reservoir that is stored in fissured Jurassic limestone that is more than 2600 m deep.

Tài liệu tham khảo

Benamara A, Kherici-Bousnoubra H, Bouabdallah F (2017) Thermomineral waters of Hammam Meskoutine (north-east Algeria): composition and origin of mineralization. J Water Land Dev 34:47–57. https://doi.org/10.1515/jwld-2017-0037 Boudoukha A et al (2015) Etude Du potentiel hydrothermal De Hammam Sokhna, Est Algérien. Larhyss J 24:161–174 Boudoukha A, Athamena M (2012) Caracterisation des eaux thermales de l’ensemble Sud setifien. Est alge´rien. Rev Sci Eau 25:103. https://doi.org/10.7202/1011602ar Boudoukha A, Messaid B (2014) Caractérisation électrique des formations aquifères de L’Est Algérien. Courrier du Savoir, No 18:77–82 Belhai M, Fujimitsu Y, Nishijima J, Bersi M (2017) Hydrochemistry and gas geochemistry of the northeastern Algerian geothermal waters. Arab J Geosci 10:743. https://doi.org/10.1007/s12517-016-2790-2 Bouchareb-Haouchine FZ et al (2012) Hydrogéochimie et géothermométrie: apports à l’identification du réservoir thermal des sources de Hammam Righa, Algérie. Hydrol Sci J 57(6):1184–1205 Chulli B et al (2011) Une approche multidisciplinaire pour la prospection des bassins hydrogéothermiques : cas du Sahel de Sfax (Tunisie orientale). Hydrol Sci J 56:507–520 Djemmal S (2018) Étude des sources thermominérales de la région de Sétif dans leur contexte structural (Est Algérien), Thèse Doctorat d'état en science, Département de Géologie, Université El Hadj Lakhdar, Batna 2, Fesdis, Algérie Djemmal S, Menani MR, Chamekh K, Baali F (2017) The contribution of fracturations in the emergence of the thermal springs in Setif city, Eastern Algeria. Carbonates Evaporites 12:141. https://doi.org/10.1007/s13146-017-0375-0 Dib-Adjoul H (1985) Le thermalisme de l’Est algérien. Thèse de Doctorat, Univ. Alger, Algérie, p 281 Dib H (2008) Guide pratique des sources thermales de l’Est algérien. Mémoire du Service Géologique national, vol 1, Editions du Service Géologique national, Alger Han DM, Liang X, Jin MG, Currell MJ, Song XF, Liu CM (2010) Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. J Volcanol Geotherm Res 189:92–104. https://doi.org/10.1016/j.jvolgeores.2009.10.011 Issaadi A (1992) Le thermalisme dans son cadre géostructurale, apports à la connaissance de la structure profonde de l’Algérie et de ses ressources géothermales. Thèse de Doctorat, Univ. Alger, Algérie, p 274 Issaadi A (1996) Mécanismes de fonctionnement des systèmes hydrothermaux. Application aux eaux thermominérales algériennes et aux eaux de Hammam Bou-Hadjar. Bull Ser Géol Algér 7–71:85 Rachid N (1987) Etude hydrogéologique et hydrochimique des eaux thermales du centre algérien (Nord). Geochemistry. Université Scientique et Médicale de Grenoble, Grenoble, p 154 Saibi H (2009) Geothermal resources in Algeria. Renew Sustain Energy Rev 13:2544–2552. https://doi.org/10.1016/j.rser.2009.06.020 Saibi H (2015) Geothermal resources in Algeria. Proceedings World Geothermal Congress, Melbourne, Australia, pp 20–25 Verdeil P (1982) Algerian thermalism in its geostructural setting—how hydrogeology has helped in the elucidation of Algeria’s deep-seated structure. J Hydrol 56:107–117. https://doi.org/10.1016/0022-1694(82)90060-9 Vila JM (1980) La chaine alpine d’Algérie orientale et les confins algéro-tunisiens. Thèse de Doctorat, Univ. Pierre et Marie Curie, Paris VI, France, pp 665 Yazdi M, Taheri M, Navi P (2015) Environmental geochemistry and sources of natural arsenic in the Kharaqan hot springs, Qazvin. Iran Environ Earth Sci 73:5395–5404. https://doi.org/10.1007/s12665-014-3794-4