Application of a new blood flow regulator in aortic endovascular therapy
Tóm tắt
Endovascular repair involving branches of the aorta is still difficult in clinical treatment. A new type of blood flow regulator has been used in thoracic endovascular aortic repair/endovascular aortic repair in our centre, and the effects were followed and analysed. From March 2014 to January 2015, 14 patients with Stanford type B aortic dissection or penetrating ulcers and aortic arch pseudoaneurysms were consecutively enrolled. All patients were evaluated and underwent endovascular repair. The average age of these patients was 59 ± 14 years (34–76 years old, median 62 years), and there were 12 males and 2 females. The blood flow regulator was a self-expanding membrane-supported artificial blood vessel. The film was made from polyester that was formed into a mesh 1 mm2 in size. The metal stent used was made of nickel-titanium alloy. The success rate for the technique was 100%. All patients underwent postoperative aortic CTA and had type III endoleak. There were no deaths and no instances of stroke, transient ischemic attack (TIA), hemiplegia, paraplegia or other central nervous system complications, and there were no left upper limb ischaemia symptoms in the group. The average follow-up time was 14.7 ± 3.6 months. One patient died of sudden death 4 months after the operation. One patient died due to abdominal aortic aneurysm rupture, and the other 12 patients survived. The survival rate was 86%. The blood flow regulator covered a total of 19 branch vessels (the intercostal artery was not counted), of which 18 experienced smooth blood flow. One patient continued to have a type III endoleak after the operation, and the endoleak disappeared after endovascular repair. This clinical case series of 14 patients with percutaneous transluminal stents indicates that the blood flow regulator is safe and feasible in TEVAR surgery, providing a promising new technology.
Tài liệu tham khảo
Kuratani T. Best surgical option for arch extension of type B dissection: the endovascular approach. Ann Cardiothorac Surg. 2014;3(3):292–9.
Sultan S, Hynes N, Kavanagh EP, Diethrich EB. How does the multilayer flow modulator work? The science behind the technical innovation. J Endovasc Ther. 2014;21(6):814–21.
Zhang YX, Lu QS, Jing ZP. Multilayer stents, a new progress in the endovascular treatment of aneurysms. Chin Med J. 2013;126(3):536–41.
Mangialardi N, Serrao E, Kasemi H, Alberti V, Fazzini S, Ronchey S. Chimney technique for aortic arch pathologies: an 11-year single-center experience. J Endovasc Ther. 2014;21(2):312–23.
Sultan S, Hynes N. One-year results of the multilayer flow modulator stent in the Management of Thoracoabdominal Aortic Aneurysms and Type B Dissections. J Endovasc Ther. 2013;20(3):366–77.
Sultan S, Hynes N. Multilayer flow modulator stent technology: a treatment revolution for US patients? Expert Rev Med Devic. 2015;12(3):217–21.
Feezor RJ, Martin TD, Hess PJ, et al. Extent of aortic coverage and incidence of spinal cord ischemia after thoracic endovascular aneurysm repair. Ann Thorac Surg. 2008;86(6):1809–14.
Setacci F, Sirignano P, De Donato G, et al. Endovascular thoracic aortic repair and risk of spinal cord ischemia: the role of previous or concomitant treatment for aortic aneurysm. J Cardiovasc Surg. 2010;51(2):169–76.