Application of a depolymerization model for predicting thermochemical hydrolysis of hemicellulose

Applied Biochemistry and Biotechnology - Tập 105 - Trang 53-67 - 2003
Todd Lloyd1, Charles E. Wyman1
1Thayer School of Engineering, Dartmouth College, Hanover

Tóm tắt

Literature data were collected and analyzed to guide selection of conditions for pretreatment by dilute acid and water-only hemicellulose hydrolysis, and the severity parameter was used to relate performance of different studies on a consistent basis and define attractive operating conditions. Experiments were then run to confirm performance with corn stover. Although substantially better hemicellulose sugar yields are observed when acid is added, costs would be reduced and processing operations simplified if less acid could be used while maintaining good yields, and understanding the relationship between operating conditions and yields would be invaluable to realizing this goal. However, existing models seldom include the oligomeric intermediates prevalent at lower acid levels, and the few studies that include such species do not account for the distribution of chain lengths during reaction. Therefore, the polymeric nature of hemicellulose was integrated into a kinetic model often used to describe the decomposition of synthetic polymers with the assumption that hemicellulose linkages are randomly broken during hydrolysis. Predictions of monomer yields were generally consistent with our pretreatment data, data reported in the literature, and predictions of other models, but the model tended to overpredict oligomer yields. These differences need to be resolved by gathering additional data and improving the model.

Tài liệu tham khảo

Wyman, C. E. (1999), Annu. Rev. Energy Environ. 24, 189–226. Wooley, R., Ruth, M., Glassner, D., and Sheehan, J. (1999), Biotechnol. Prog. 15, 794–803. Lynd, L. R., Elander, R. T., Wyman, C. E. (1996), Appl. Biochem. Biotechnol. 57/58, 741–761. Hsu, T. (1996), in Handbook on Bioethanol: Production and Utilization, Wyman, C. E., ed., Taylor & Francis, Washington, DC, pp. 183–187. Garrote, G., Domínguez, H., and Parajó, J. C. (2001), Process Biochem. 36, 571–578. Rubio, M., Tortosa, J. F., Quesada, J., and Gómez, D. (1998), Biomass Bioenergy 15(6), 483–491. Carrion, J., Rubio, M., Gómez, D., Miñana, A., and Soler, A., (1989), in Proceedings of the 5th International Conference on Biomass for Industry, Grassi, G., Gosse, G., and Dos Santos, G., eds., Lisbon, Portugal, Elsevier Applied Science, London, England, UK, pp. 2.45–2.49. Lamptey, J., Robinson, C. W., and Moo-Young, M., (1985), Biotechnol. Lett. 7(7), 531–534. Tortosa, J. F., Rubio, M., and Gómez, D. (1995), Afinidad LII 457, 181–188. Schultz, T. P., Templeton, M. C., Biermann, C. J., and McGinnis, G. D. (1984), J. Agric. Food Chem. 32(5), 1166–1172. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H. (1997), Bioresour. Tech. 59, 129–136. Bhandari, N., MacDonald, D. G., and Bakhshi, N. N. (1984), Biotechnol. Bioeng. 26, 320–327. Torget, R., Walter, P., Himmel, M., and Grohmann, K. (1991), Appl. Biochem. Biotechnol. 28/29, 75–86. Lee, Y. Y., Chen, R., and Iyer, P. (1994), Annual Report for NREL Subcontract no. XAW-3-13441-01, National Renewable Energy Laboratory, Golden, CO. Ehrman, T. (1994), Standard Method for Determination of Total Solids in Biomass, Laboratory Analytical Procdure No. 001, National Renewable Energy Labortory, Golden, CO. Tucker, M. P., Mitri, R. K., Eddy, F. P., Nguyen, Q. A., Gedvilas, L. M., and Webb, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 39–50. Nguyen, Q. A., Tucker, M. P., Boynton, B. L., Keller, F. A., and Schell, D. J. (1998), Appl. Biochem. Biotechnol. 70–72, 77–87. Stuhler, S. L. and Wyman, C. E. (2003), Appl. Biochem. Biotechnol. in press. Ruiz, R. and Ehrman, T., (1996), Determination of Carbohydrates in Biomass by High Performance Liquid Chromatography, Laboratory Analytical Procedure No. 002, National Renewable Energy Labortory, Goldon, CO. Ruiz, R. and Ehrman, T. (1996), HPLC Analysis of Liquid Fractions of Process Samples for Monomeric Sugars and Cellobiose, Laboratory Analytical Procedure No. 013, National Renewable Energy Labortory, Golden, CO. Ruiz, R. and Ehrman, T. (1996), Dilute Acid Hydrolysis Procedure for Determination of Total Sugars in the Liquid Fraction of Process Samples, Laboratory Analytical Procdure No. 014, National Renewable Energy Labortory, Golden, CO. Saeman, J. F., (1945), Ind. Eng. Chem. 37, 43–52. Jacobsen, S. E. and Wyman, C. E. (2000), Appl. Biochem. Biotechnol. 84–86, 81–95. Kobayashi, T. and Sakai, Y. (1956), Bull. Agric. Chem. Soc. Japan 20(1), 1–7. Overend, R. P. and Chornet, E. (1987), Philos. Trans. Soc. Lond. A321, 523–536. Chum, H. L., Johnson, D. K., Black, S. K., and Overend, R. P. (1990), Appl. Biochem. Biotechnol. 24/25, 1–14. McCoy, B. J. and Madras, G. (2001), Chem. Eng. Sci. 56, 2831–2836. Austin, L., Shoji, K., Bhatia, V., Jindal, V., and Savage, K. (1976), Ind. Eng. Process Des. Dev. 15(1), 187–195. Wang, M., Smith, J. M., and McCoy, B. J. (1995), AIChE J. 41(6), 1521–1532. McCoy, B. J. and Wang, M. (1994), Chem. Eng. Sci. 49(22), 3773–3785. McGrady, E. D. and Ziff, R. M. (1988), AIChE J. 34(12), 2073–2076. Simha, R. (1941), J. Appl. Physiol. 12, 569–578. Jellinek, H. H. G. and White, G. (1950), J. Polymer Sci. 6(6), 745–756. Agarwal, N., McKean, W. T., and Gustafson, R. R. (1992), Appita 45(3), 165–169. Converse, A. O., Kwarteng, I. K., Grethlein, H. E., and Ooshima, H. (1989), Appl. Biochem. Biotechnol. 20/21, 63–78.