Apoptotic endonuclease EndoG regulates alternative splicing of human telomerase catalytic subunit hTERT

D. D. Zhdanov1,2, D. A. Vasina2, E. V. Orlova3, V. S. Orlova1, M. V. Pokrovskaya2, S. S. Aleksandrova2, N. N. Sokolov2
1Ecological Faculty, Peoples Friendship University of Russia, Moscow, Russia
2Institute of Biomedical Chemistry, Moscow, Russia
3Institute of Theoretical and Experimental Biophysics, Pushchino, Russia

Tóm tắt

Human telomerase catalytic subunit hTERT is subjected to alternative splicing results in loss of its function and leads to decrease of telomerase activity. However, very little is known about the mechanism of hTERT pre-mRNA alternative splicing. Apoptotic endonuclease EndoG is known to participate this process. The aim of this study was to determine the role of EndoG in regulation of hTERT alternative splicing. Increased expression of β-deletion splice variant was determined during EndoG overexpression in CaCo-2 cell line, after EndoG treatment of cell cytoplasm and nuclei as well as after nuclei incubation with EndoG digested cell RNA. hTERT alternative splicing was induced by 47-mer RNA oligonucleotide in naked nuclei and in cells after transfection. Identified long non-coding RNA, that is the precursor of 47-mer RNA oligonucleotide. Its size is 1754 nucleotides. Based on the results the following mechanism was proposed. hTERT pre-mRNA is transcribed from coding DNA strand while long non-coding RNA is transcribed from template strand of hTERT gene. EndoG digests long non-coding RNA and produces 47-mer RNA oligonucleotide complementary to hTERT pre-mRNA exon 8 and intron 8 junction place. Interaction of 47-mer RNA oligonucleotide and hTERT pre-mRNA causes alternative splicing.

Từ khóa


Tài liệu tham khảo

Blackburn, E.H., Nature, 2000, vol. 408, pp. 53–56. doi 10.1038/35040500 Harley, C.B., Futcher, A.B., and Greider, C.W., Nature, 1990, vol. 345, pp. 458–460. doi 10.1038/345458a0 Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., and Shay J.W., Science, 1994, vol. 266, pp. 2011–2015. Meyerson, M., Counter, C.M., Eaton, E.N., Ellisen, L.W., Steiner, P., Caddle, S.D., and Weinberg, R.A., Cell, 1997, vol. 90, pp. 785–795. Saebøe-Larssen, S., Fossberg, E., and Gaudernack, G., BMC Mol. Biol., 2006, vol. 7, p. 26. doi 10.1186/1471-2199-7-26 Ulaner, G.A., Hu, J.F., Vu, T.H., Oruganti, H., Giudice, L.C., and Hoffman, A.R., Int. J. Cancer, 2000, vol. 85, pp. 330–335. Ulaner, G.A., Hu, J.F., Vu, T.H., Giudice, L.C., and Hoffman, A.R., Cancer Res., 1998, vol. 58, pp. 4168–4172. Listerman, I., Sun, J., Gazzaniga, F.S., Lukas, J.L., and Blackburn, E.H., Cancer Res., 2013, vol. 73, pp. 2817–2828. doi 10.1158/0008-5472.CAN-12-3082 Zhdanov, D.D., Vasina, D.A., Orlova, V.S., Gotovtseva, V.Y., Bibikova, M.V., Pokrovsky, V.S., and Sokolov, N.N., Biomed. Khim., 2016, vol. 62, pp. 239–250. doi 10.18097/pbmc20166203239 Nagata, S., Nagase, H., Kawane, K., Mukae, N., and Fukuyama, H., Cell Death Differ., 2003, vol. 10, pp. 108–116. doi 10.1038/sj.cdd.4401161 Ruiz-Carrillo, A. and Renaud, J., EMBO J., 1987, vol. 6, pp. 401–647. Diener, T., Neuhaus, M., Koziel, R., Micutkova, L., and Jansen-Dürr, P., Exp. Gerontol., 2010, vol. 45, pp. 638–644. doi 10.1016/j.exger.2010.03.002 Laukova, M., Alaluf, L.G., Serova, L.I., Arango, V., and Sabban, E.L., Endocrinology, 2014, vol. 155, pp. 3920–3933. doi 10.1210/en.2014-1192 Pravdenkova, S.V., Basnakian, A.G., James, S.J., and Andersen, B.J., Brain Res., 1996, vol. 729, pp. 151–155. Basnakian, A.G., Apostolov, E.O., Yin, X., Abiri, S.O., Stewart, A.G., Singh, A.B., and Shah, S.V., Exp. Cell Res., 2006, vol. 312, pp. 4139–4149. doi 10.1016/j.yexcr.2006.09.012 Lopez, J.P., Diallo, A., Cruceanu, C., Fiori, L.M., Laboissiere, S., Guillet, I., and Ernst, C., BMC Med. Genomics, 2015, vol. 8, p. 35. doi 10.1186/s12920-015-0109-x Nakama, M., Kawakami, K., Kajitani, T., Urano, T., and Murakami, Y., Genes Cells, 2012, vol. 17, pp. 218–233. doi 10.1111/j.1365-2443.2012.01583.x Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685. Hofnagel, O., Luechtenborg, B., Stolle, K., Lorkowski, S., Eschert, H., Plenz, G., and Robenek, H., Arteriosclerosis, Thrombosis, Vascular Biol., 2004, vol. 24, pp. 1789–1795. doi 10.1161/01.ATV.0000140061.89096.2b Kovalenko, N.A., Zhdanov, D.D., Bibikova, M.V., and Gotovtseva, V.I., Biomed Khim., 2011, vol. 57, no. 5, pp. 501–510. Blackburn, E.H., Cell, 2001, vol. 106, pp. 661–673. Ohsato, T., Ishihara, N., Muta, T., Umeda, S., Ikeda, S., Mihara, K., and Kang, D., Eur. J. Biochem., 2002, vol. 269, pp. 5765–5770. Khanna, A. and Stamm, S., RNA Biol., 2010, vol. 7, pp. 480–485. Bauman, J., Jearawiriyapaisarn, N., and Kole, R., Oligonucleotides, 2009, vol. 19, pp. 1–13. doi 10.1089/oli.2008.0161 Pirollo, K.F., Rait, A., Sleer, L.S., and Chang, E.H., Pharmacol. Therapeut., 2003, vol. 99, pp. 55–77. Yi, X., White, D.M., Aisner, D.L., Baur, J.A., Wright, W.E., and Shay, J.W., Neoplasia, 2000, vol. 2, pp. 433–440. Colgin, L.M., Wilkinson, C., Englezou, A., Kilian, A., Robinson, M.O., and Reddel, R.R., Neoplasia, 2000, vol. 2, pp. 426–432. Makeyev, E.V., Zhang, J., Carrasco, M.A., and Maniatis, T., Mol. Cell, 2007, vol. 27, pp. 435–448. doi 10.1016/j.molcel.2007.07.015 Jin, Y., Yang, Y., and Zhang, P., RNA Biol., 2011, vol. 8, pp. 450–457.