Apolipoprotein Mimetic Peptides: Potential New Therapies for Cardiovascular Diseases
Tóm tắt
Từ khóa
Tài liệu tham khảo
Davidsson, 2010, Proteomics of Apolipoproteins and Associated Proteins From Plasma High-Density Lipoproteins, Arter. Thromb. Vasc. Biol., 30, 156, 10.1161/ATVBAHA.108.179317
Mahley, 1984, Plasma lipoproteins: Apolipoprotein structure and function, J. Lipid Res., 25, 1277, 10.1016/S0022-2275(20)34443-6
Vance, D.E., and Vance, J.E. (2008). Chapter 17–Lipoprotein structure. Biochemistry of lipids, lipoproteins and membranes, Elsevier. [5th ed.].
Pownall, 2016, Native and Reconstituted Plasma Lipoproteins in Nanomedicine: Physicochemical Determinants of Nanoparticle Structure, Stability, and Metabolism, Methodist DeBakey Cardiovasc. J., 12, 146, 10.14797/mdcj-12-3-146
Katz, L.S., and Phillips, M.C. (2010). High density lipoprotein structure-function and role in reverse cholesterol transport. Cholesterol Binding and Cholesterol Transport Proteins, Springer.
Segrest, 1990, Amphipathic helix motif: Classes and properties, Proteins: Struct. Funct. Bioinform., 8, 103, 10.1002/prot.340080202
Davidson, 2007, The Structure of Apolipoprotein A-I in High Density Lipoproteins, J. Biol. Chem., 282, 22249, 10.1074/jbc.R700014200
Melchior, 2017, A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state, Nat. Struct. Mol. Biol., 24, 1093, 10.1038/nsmb.3501
Mahley, 1988, Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology, Science, 240, 622, 10.1126/science.3283935
Wolska, 2017, Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism, Atherosclerosis, 267, 49, 10.1016/j.atherosclerosis.2017.10.025
Rosenson, 2012, Cholesterol Efflux and Atheroprotection, Circulation, 125, 1905, 10.1161/CIRCULATIONAHA.111.066589
Vuilleumier, 2013, Pro- or anti-inflammatory role of apolipoprotein A-1 in high-density lipoproteins?, Swiss Med Wkly., 143, 1495
Navab, 2000, Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: Steps 2 and 3, J. Lipid Res., 41, 1495, 10.1016/S0022-2275(20)33462-3
Spagnoli, 2007, Role of Inflammation in Atherosclerosis, J. Nucl. Med., 48, 1800, 10.2967/jnumed.107.038661
Vedhachalam, 2007, Mechanism of ATP-binding Cassette Transporter A1-mediated Cellular Lipid Efflux to Apolipoprotein A-I and Formation of High Density Lipoprotein Particles, J. Biol. Chem., 282, 25123, 10.1074/jbc.M704590200
Tall, 2015, Cholesterol, inflammation and innate immunity, Nat. Rev. Immunol., 15, 104, 10.1038/nri3793
Remaley, 2003, Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway, J. Lipid Res., 44, 828, 10.1194/jlr.M200475-JLR200
Marqusee, 1987, Helix stabilization by Glu-. Lys+ salt bridges in short peptides of de novo design, Proc. Natl. Acad. Sci. USA, 84, 8898, 10.1073/pnas.84.24.8898
Kanellis, 1980, Studies of synthetic peptide analogs of the amphipathic helix. Effect of charged amino acid residue topography on lipid affinity, J. Biol. Chem., 255, 11464, 10.1016/S0021-9258(19)70314-7
Mishra, 2006, Association of a Model Class A (Apolipoprotein) Amphipathic α Helical Peptide with Lipid, J. Biol. Chem., 281, 6511, 10.1074/jbc.M511475200
Anantharamaiah, 1985, Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine, J. Biol. Chem., 260, 10248, 10.1016/S0021-9258(17)39238-4
Bloedon, 2008, Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients, J. Lipid Res., 49, 1344, 10.1194/jlr.P800003-JLR200
Watson, 2011, Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function, J. Lipid Res., 52, 361, 10.1194/jlr.M011098
Khan, 2003, Single-dose intravenous infusion of etc-642, a 22-mer apoa-i analogue and phospholipids complex, elevates hdl-c in atherosclerosis patients, Circulation, 108, 563
Tabet, 2010, The 5a apolipoprotein a-i mimetic peptide displays antiinflammatory and antioxidant properties in vivo and in vitro, Arter. Thromb. Vasc. Biol., 30, 246, 10.1161/ATVBAHA.109.200196
Amar, 2010, 5A Apolipoprotein Mimetic Peptide Promotes Cholesterol Efflux and Reduces Atherosclerosis in Mice, J. Pharmacol. Exp. Ther., 334, 634, 10.1124/jpet.110.167890
Mishra, 2008, Effect of Leucine to Phenylalanine Substitution on the Nonpolar Face of a Class A Amphipathic Helical Peptide on Its Interaction with Lipid, J. Biol. Chem., 283, 34393, 10.1074/jbc.M806384200
Anantharamaiah, 2007, Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides, J. Lipid Res., 48, 1915, 10.1194/jlr.R700010-JLR200
Wagner, 2002, Influenza Infection Promotes Macrophage Traffic into Arteries of Mice That Is Prevented by D-4F, an Apolipoprotein A-I Mimetic Peptide, Circulation, 106, 1127, 10.1161/01.CIR.0000030182.35880.3E
Ou, 2005, Effects of D-4F on vasodilation and vessel wall thickness in hypercholesterolemic LDL receptor-null and LDL receptor/apolipoprotein A-I double-knockout mice on Western diet, Circ. Res., 97, 1190, 10.1161/01.RES.0000190634.60042.cb
Weihrauch, 2007, Effects of D-4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight-skin mice, Am. J. Physiol. Circ. Physiol., 293, H1432, 10.1152/ajpheart.00038.2007
Peterson, 2007, Long-Term Treatment with the Apolipoprotein A1 Mimetic Peptide Increases Antioxidants and Vascular Repair in Type I Diabetic Rats, J. Pharmacol. Exp. Ther., 322, 514, 10.1124/jpet.107.119479
Peterson, 2008, L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice, J. Lipid Res., 49, 1658, 10.1194/jlr.M800046-JLR200
Deleve, 2008, Prevention of Hepatic Fibrosis in a Murine Model of Metabolic Syndrome with Nonalcoholic Steatohepatitis, Am. J. Pathol., 173, 993, 10.2353/ajpath.2008.070720
Handattu, 2009, Oral apolipoprotein A-I mimetic peptide improves cognitive function and reduces amyloid burden in a mouse model of Alzheimer’s disease, Neurobiol. Dis., 34, 525, 10.1016/j.nbd.2009.03.007
Schoeman, 2008, Treatment with an apolipoprotein A-1 mimetic peptide in combination with pravastatin inhibits collagen-induced arthritis, Clin. Immunol., 127, 234, 10.1016/j.clim.2008.01.016
Buga, 2008, D-4F reduces EO6 immunoreactivity, SREBP-1c mRNA levels, and renal inflammation in LDL receptor-null mice fed a Western diet, J. Lipid Res., 49, 192, 10.1194/jlr.M700433-JLR200
Yang, 2019, Reverse-D-4F improves endothelial progenitor cell function and attenuates LPS-induced acute lung injury, Respir. Res., 20, 1, 10.1186/s12931-019-1099-6
Navab, 2004, Oral D-4F Causes Formation of Pre-β High-Density Lipoprotein and Improves High-Density Lipoprotein–Mediated Cholesterol Efflux and Reverse Cholesterol Transport from Macrophages in Apolipoprotein E–Null Mice, Circulation, 109, 3215, 10.1161/01.CIR.0000134275.90823.87
Qin, 2012, Reverse D4F, an Apolipoprotein-AI Mimetic Peptide, Inhibits Atherosclerosis in ApoE-null Mice, J. Cardiovasc. Pharmacol. Ther., 17, 334, 10.1177/1074248411434598
Sethi, 2008, Asymmetry in the Lipid Affinity of Bihelical Amphipathic Peptides, J. Biol. Chem., 283, 32273, 10.1074/jbc.M804461200
Vanags, 2011, The apolipoprotein A-I mimetic peptide, ETC-642, reduces chronic vascular inflammation in the rabbit, Lipids Heal. Dis., 10, 224, 10.1186/1476-511X-10-224
Iwata, 2011, Antiatherogenic effects of newly developed apolipoprotein A-I mimetic peptide/phospholipid complexes against aortic plaque burden in Watanabe-heritable hyperlipidemic rabbits, Atherosclerosis, 218, 300, 10.1016/j.atherosclerosis.2011.05.029
Nicholls, 2011, The apolipoprotein A-I mimetic peptide ETC-642 exhibits anti-inflammatory properties that are comparable to high density lipoproteins, Atherosclerosis, 217, 395, 10.1016/j.atherosclerosis.2011.04.001
Reddy, 2014, Apolipoprotein A-I mimetics, Curr. Opin. Lipidol., 25, 304, 10.1097/MOL.0000000000000092
Gou, 2020, A novel apoA-I mimetic peptide suppresses atherosclerosis by promoting physiological HDL function in apoE −/− mice, Br. J. Pharmacol., 177, 48, 10.1111/bph.15213
Uehara, 2013, FAMP, a Novel ApoA-I Mimetic Peptide, Suppresses Aortic Plaque Formation Through Promotion of Biological HDL Function in ApoE-Deficient Mice, J. Am. Hear. Assoc., 2, 48
Suematsu, 2019, Anti-atherosclerotic effects of an improved apolipoprotein A-I mimetic peptide, Int. J. Cardiol., 297, 111, 10.1016/j.ijcard.2019.08.043
Sviridov, 2011, Helix stabilization of amphipathic peptides by hydrocarbon stapling increases cholesterol efflux by the ABCA1 transporter, Biochem. Biophys. Res. Commun., 410, 446, 10.1016/j.bbrc.2011.05.154
Islam, 2020, Incorporation of α-methylated amino acids into Apolipoprotein A-I mimetic peptides improves their helicity and cholesterol efflux potential, Biochem. Biophys. Res. Commun., 526, 349, 10.1016/j.bbrc.2020.03.070
Sviridov, 2016, Amphipathic polyproline peptides stimulate cholesterol efflux by the ABCA1 transporter, Biochem. Biophys. Res. Commun., 471, 560, 10.1016/j.bbrc.2016.02.032
Adzhubei, 2013, Polyproline-II Helix in Proteins: Structure and Function, J. Mol. Biol., 425, 2100, 10.1016/j.jmb.2013.03.018
Zhao, 2017, Self-Assembling Cyclic d,l-α-Peptides as Modulators of Plasma HDL Function. A Supramolecular Approach toward Antiatherosclerotic Agents, ACS Central Sci., 3, 639, 10.1021/acscentsci.7b00154
Nissen, 2003, Effect of Recombinant ApoA-I Milano on Coronary Atherosclerosis in Patients With Acute Coronary Syndromes, JAMA, 290, 2292, 10.1001/jama.290.17.2292
Tardif, 2007, Effects of Reconstituted High-Density Lipoprotein Infusions on Coronary AtherosclerosisA Randomized Controlled Trial, JAMA, 297, 1675, 10.1001/jama.297.15.jpc70004
Parolini, 2019, Infusions of Large Synthetic HDL Containing Trimeric apoA-I Stabilize Atherosclerotic Plaques in Hypercholesterolemic Rabbits, Can. J. Cardiol., 35, 1400, 10.1016/j.cjca.2019.05.033
Gibson, 2019, The CSL112-2001 trial: Safety and tolerability of multiple doses of CSL112 (apolipoprotein A-I [human]), an intravenous formulation of plasma-derived apolipoprotein A-I, among subjects with moderate renal impairment after acute myocardial infarction, Am. Hear. J., 208, 81, 10.1016/j.ahj.2018.11.008
Remaley, 2008, HDL-replacement therapy: Mechanism of action, types of agents and potential clinical indications, Expert Rev. Cardiovasc. Ther., 6, 1203, 10.1586/14779072.6.9.1203
Nicholls, 2006, Relationship Between Atheroma Regression and Change in Lumen Size After Infusion of Apolipoprotein A-I Milano, J. Am. Coll. Cardiol., 47, 992, 10.1016/j.jacc.2005.11.040
Diditchenko, 2013, Novel Formulation of a Reconstituted High-Density Lipoprotein (CSL112) Dramatically Enhances ABCA1-Dependent Cholesterol Efflux, Arter. Thromb. Vasc. Biol., 33, 2202, 10.1161/ATVBAHA.113.301981
Gille, 2014, CSL112 Enhances Biomarkers of Reverse Cholesterol Transport After Single and Multiple Infusions in Healthy Subjects, Arter. Thromb. Vasc. Biol., 34, 2106, 10.1161/ATVBAHA.114.303720
Tardif, 2014, Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: A randomized trial, Eur. Heart. J., 35, 3277, 10.1093/eurheartj/ehu171
Remaley, 2013, Tomatoes, lysophosphatidic acid, and the small intestine: New pieces in the puzzle of apolipoprotein mimetic peptides?, J. Lipid Res., 54, 3223, 10.1194/jlr.E045054
Schwendeman, 2015, The effect of phospholipid composition of reconstituted HDL on its cholesterol efflux and anti-inflammatory properties, J. Lipid Res., 56, 1727, 10.1194/jlr.M060285
Nowacki, 2016, The 5A apolipoprotein A-I (apoA-I) mimetic peptide ameliorates experimental colitis by regulating monocyte infiltration, Br. J. Pharmacol., 173, 2780, 10.1111/bph.13556
Yao, 2010, 5A, an Apolipoprotein A-I Mimetic Peptide, Attenuates the Induction of House Dust Mite-Induced Asthma, J. Immunol., 186, 576, 10.4049/jimmunol.1001534
Souza, 2016, Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation, Kidney Int., 89, 809, 10.1016/j.kint.2015.12.043
Bourdi, 2018, Intravenous toxicity and toxicokinetics of an HDL mimetic, Fx-5A peptide complex, in cynomolgus monkeys, Regul. Toxicol. Pharmacol., 100, 59, 10.1016/j.yrtph.2018.10.009
Amar, M.J. (2020). Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of fx-5a in Healthy Volunteers. Clinicaltrials.gov, NIH National Library of Medicine.
Getz, G.S., and Reardon, C.A. (2018). Apoprotein E and Reverse Cholesterol Transport. Int. J. Mol. Sci., 19.
Marais, 2019, Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease, Pathology, 51, 165, 10.1016/j.pathol.2018.11.002
Mahley, 2009, Apolipoprotein E: Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS, J. Lipid Res., 50, S183, 10.1194/jlr.R800069-JLR200
Mahley, 2016, Apolipoprotein E: From cardiovascular disease to neurodegenerative disorders, J. Mol. Med., 94, 739, 10.1007/s00109-016-1427-y
Beisiegel, 1989, The LDL–receptor–related protein, LRP, is an apolipoprotein E-binding protein, Nat. Cell Biol., 341, 162
Mahley, 1979, Interaction of plasma lipoproteins containing apolipoproteins B and E with heparin and cell surface receptors, Biochim. et Biophys. Acta (BBA) Lipids Lipid Metab., 575, 81, 10.1016/0005-2760(79)90133-4
Gonzales, 2013, Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans, J. Clin. Investig., 123, 2742, 10.1172/JCI67398
Futamura, 2005, Two-step Mechanism of Binding of Apolipoprotein E to Heparin, J. Biol. Chem., 280, 5414, 10.1074/jbc.M411719200
Vedhachalam, 2007, The C-Terminal Lipid-Binding Domain of Apolipoprotein E Is a Highly Efficient Mediator of ABCA1-Dependent Cholesterol Efflux that Promotes the Assembly of High-Density Lipoproteins†, Biochem., 46, 2583, 10.1021/bi602407r
Remaley, 2001, Apolipoprotein Specificity for Lipid Efflux by the Human ABCAI Transporter, Biochem. Biophys. Res. Commun., 280, 818, 10.1006/bbrc.2000.4219
Bouchareychas, L., and Raffai, R.L. (2018). Apolipoprotein E and Atherosclerosis: From Lipoprotein Metabolism to MicroRNA Control of Inflammation. J. Cardiovasc. Dev. Dis., 5.
Valanti, 2019, The future of apolipoprotein E mimetic peptides in the prevention of cardiovascular disease, Curr. Opin. Lipidol., 30, 326, 10.1097/MOL.0000000000000615
Phillips, 2014, Apolipoprotein E isoforms and lipoprotein metabolism, IUBMB Life, 66, 616, 10.1002/iub.1314
Marais, 2013, Dysbetalipoproteinaemia: A mixed hyperlipidaemia of remnant lipoproteins due to mutations in apolipoprotein E, Crit. Rev. Clin. Lab. Sci., 51, 46, 10.3109/10408363.2013.870526
Chen, 2021, Apolipoprotein E: Structural Insights and Links to Alzheimer Disease Pathogenesis, Neuron, 109, 205, 10.1016/j.neuron.2020.10.008
Chen, 2011, Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions, Proc. Natl. Acad. Sci. USA, 108, 14813, 10.1073/pnas.1106420108
Innerarity, 1979, Binding of arginine-rich (E) apoprotein after recombination with phospholipid vesicles to the low density lipoprotein receptors of fibroblasts, J. Biol. Chem., 254, 4186, 10.1016/S0021-9258(18)50713-4
Datta, 2000, The Receptor Binding Domain of Apolipoprotein E, Linked to a Model Class A Amphipathic Helix, Enhances Internalization and Degradation of LDL by Fibroblasts†, Biochem., 39, 213, 10.1021/bi991209w
Datta, 2001, Cationic domain 141-150 of apoE covalently linked to a class A amphipathic helix enhances atherogenic lipoprotein metabolism in vitro and in vivo, J. Lipid Res., 42, 959, 10.1016/S0022-2275(20)31620-5
Handattu, 2013, Two apolipoprotein E mimetic peptides with similar cholesterol reducing properties exhibit differential atheroprotective effects in LDL-R null mice, Atheroscleosis., 227, 58, 10.1016/j.atherosclerosis.2012.10.064
Garber, 2003, Effect of an arginine-rich amphipathic helical peptide on plasma cholesterol in dyslipidemic mice, Atherosclerosis, 168, 229, 10.1016/S0021-9150(03)00101-1
Gupta, 2005, Apolipoprotein E Mimetic Peptide Dramatically Lowers Plasma Cholesterol and Restores Endothelial Function in Watanabe Heritable Hyperlipidemic Rabbits, Circulation, 111, 3112, 10.1161/CIRCULATIONAHA.104.497107
Datta, 2010, Anti-inflammatory and recycling properties of an apolipoprotein mimetic peptide, Ac-hE18A-NH, Atherosclerosis, 208, 134, 10.1016/j.atherosclerosis.2009.07.019
Nayyar, 2012, Apolipoprotein E mimetic is more effective than apolipoprotein A-I mimetic in reducing lesion formation in older female apo E null mice, Atherosclerosis, 224, 326, 10.1016/j.atherosclerosis.2012.05.040
White, 2015, Recent developments in modulating atherogenic lipoproteins, Curr. Opin. Lipidol., 26, 369, 10.1097/MOL.0000000000000216
Therapeutics, C. (2021). About capstone therapeutics corp. Capstone Ther., Available online: http://www.capstonethx.com/.
Anantharamaiah, 2018, Novel fatty acyl apoE mimetic peptides have increased potency to reduce plasma cholesterol in mice and macaques, J. Lipid Res., 59, 2075, 10.1194/jlr.M085985
Handattu, 2010, Oral administration of L-mR18L, a single domain cationic amphipathic helical peptide, inhibits lesion formation in ApoE null mice, J. Lipid Res., 51, 3491, 10.1194/jlr.M006916
Hafiane, 2014, Apolipoprotein E derived HDL mimetic peptide ATI-5261 promotes nascent HDL formation and reverse cholesterol transport in vitro, Biochim. et Biophys. Acta (BBA) Mol. Cell Biol. Lipids, 1841, 1498
Bielicki, 2010, A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice, J. Lipid Res., 51, 1496, 10.1194/jlr.M003665
Hafiane, 2019, ABCA1 Agonist Mimetic Peptide CS-6253 Induces Microparticles Release From Different Cell Types by ABCA1-Efflux–Dependent Mechanism, Can. J. Cardiol., 35, 770, 10.1016/j.cjca.2019.02.018
Hafiane, A., Bielicki, J.K., Johansson, J.O., and Genest, J. (2015). Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro. PLoS ONE, 10.
Zhao, 2011, A new recombinant human apolipoprotein E mimetic peptide with high-density lipoprotein binding and function enhancing activity, Exp. Biol. Med., 236, 1468, 10.1258/ebm.2011.011169
Xu, 2016, A human apolipoprotein E mimetic peptide reduces atherosclerosis in aged apolipoprotein E null mice, Am. J. Transl. Res., 8, 3482
Guptill, 2017, Phase 1 Randomized, Double-Blind, Placebo-Controlled Study to Determine the Safety, Tolerability, and Pharmacokinetics of a Single Escalating Dose and Repeated Doses of CN-105 in Healthy Adult Subjects, J. Clin. Pharmacol., 57, 770, 10.1002/jcph.853
Lei, 2016, Neuroprotective pentapeptide CN-105 improves functional and histological outcomes in a murine model of intracerebral hemorrhage, Sci. Rep., 6, 4834, 10.1038/srep34834
Sharifov, 2013, Cationic peptide mR18L with lipid lowering properties inhibits LPS-induced systemic and liver inflammation in rats, Biochem. Biophys. Res. Commun., 436, 705, 10.1016/j.bbrc.2013.06.020
Cao, 2015, Effect of the apolipoprotein e mimetic peptide epk on atherosclerosis in apoe(-/-) mice, Prog. Biochem. Biophys., 42, 833
White, 2014, Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: A review, J. Lipid Res., 55, 2007, 10.1194/jlr.R051367
Mooga, 2018, The Apolipoprotein E Mimetic Peptide AEM-2 Attenuates Mitochondrial Injury and Apoptosis in Human THP-1 Macrophages, Curr. Top. Pept. Protein Res., 19, 15
Therapeutics, C. (2021, March 03). Capstone therapeutics announces profound, rapid ldl cholesterol reduction in aem-28-14 primate study. Available online: https://www.bloomberg.com/press-releases/2016-12-19/capstone-therapeutics-announces-profound-rapid-ldl-cholesterol-reduction-in-aem-28-14-primate-study.
Chernick, D., Zhong, R., and Li, L. (2020). The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer’s Disease. Biomolecules, 10.
Wolska, 2020, Apolipoprotein C-II: the re-emergence of a forgotten factor, Curr. Opin. Lipidol., 31, 147, 10.1097/MOL.0000000000000680
MacRaild, 2001, NMR Structure of Human Apolipoprotein C-II in the Presence of Sodium Dodecyl Sulfate†, Biochemics, 40, 5414, 10.1021/bi002821m
Zdunek, 2003, Global Structure and Dynamics of Human Apolipoprotein CII in Complex with Micelles: Evidence for Increased Mobility of the Helix Involved in the Activation of Lipoprotein Lipase †, ‡, Biochemics, 42, 1872, 10.1021/bi0267184
Kinnunen, P.K., Jackson, R.L., Smith, L.C., Gotto, A.M., and Sparrow, J.T. (1977). Activation of Lipoprotein Lipase by Native and Synthetic Fragments of Human Plasma Apolipoprotein C-II, National Academy of Sciences.
Olivecrona, 1997, Lipid binding of apolipoprotein CII is required for stimulation of lipoprotein lipase activity against apolipoprotein CII-deficient chylomicrons, Arter. Thromb. Vasc. Biol., 17, 1545, 10.1161/01.ATV.17.8.1545
Shen, 2002, Functional Analyses of Human Apolipoprotein CII by Site-directed Mutagenesis, J. Biol. Chem., 277, 4334, 10.1074/jbc.M105421200
Wolska, 2020, A dual apolipoprotein C-II mimetic–apolipoprotein C-III antagonist peptide lowers plasma triglycerides, Sci. Transl. Med., 12, eaaw7905, 10.1126/scitranslmed.aaw7905
Meyers, 2015, A Pressure-dependent Model for the Regulation of Lipoprotein Lipase by Apolipoprotein C-II, J. Biol. Chem., 290, 18029, 10.1074/jbc.M114.629865
Miller, 1981, Familial apolipoprotein CII deficiency: Plasma lipoproteins and apolipoproteins in heterozygous and homozygous subjects and the effects of plasma infusion, Eur. J. Clin. Investig., 11, 69, 10.1111/j.1365-2362.1981.tb01768.x
Amar, 2015, A Novel Apolipoprotein C-II Mimetic Peptide That Activates Lipoprotein Lipase and Decreases Serum Triglycerides in Apolipoprotein E–Knockout Mice, J. Pharmacol. Exp. Ther., 352, 227, 10.1124/jpet.114.220418
Chung, 1985, Studies of synthetic peptide analogs of the amphipathic helix. Correlation of structure with function, J. Biol. Chem., 260, 10256, 10.1016/S0021-9258(17)39239-6
Musliner, 1979, Activation of lipoprotein lipase by native and acylated peptides of apolipoprotein C-II, Biochim. Biophys. Acta, 573, 501, 10.1016/0005-2760(79)90224-8
Reimund, 2017, Lipoprotein lipase activity and interactions studied in human plasma by isothermal titration calorimetry, J. Lipid Res., 58, 279, 10.1194/jlr.D071787
Reimund, 2019, Apolipoprotein C-II mimetic peptide is an efficient activator of lipoprotein lipase in human plasma as studied by a calorimetric approach, Biochem. Biophys. Res. Commun., 519, 67, 10.1016/j.bbrc.2019.08.130
Sakurai, 2016, Creation of Apolipoprotein C-II (ApoC-II) Mutant Mice and Correction of Their Hypertriglyceridemia with an ApoC-II Mimetic Peptide, J. Pharmacol. Exp. Ther., 356, 341, 10.1124/jpet.115.229740
Komatsu, 2019, Apolipoprotein C-II Mimetic Peptide Promotes the Plasma Clearance of Triglyceride-Rich Lipid Emulsion and the Incorporation of Fatty Acids into Peripheral Tissues of Mice, J. Nutr. Metab., 2019, 1, 10.1155/2019/7078241
Ramms, 2018, Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism, Curr. Opin. Lipidol., 29, 171, 10.1097/MOL.0000000000000502
Wolska, 2020, Hypertriglyceridemia: New approaches in management and treatment, Curr. Opin. Lipidol., 31, 331, 10.1097/MOL.0000000000000710
Witztum, 2019, Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome, New Engl. J. Med., 381, 531, 10.1056/NEJMoa1715944
CorvidiaTherapeutics (2021, March 03). Corvidia therapeutics announces publication in science translational medicine of strategy for lowering triglycerides using a mimetic peptide. Available online: https://corvidiatx.com/wp-content/uploads/2020/01/FINAL-Press-Release_Corvidia-NIH-Translational-Science-Publication.pdf.
Tsujita, 2018, Reconstituted Discoidal High-Density Lipoproteins: Bioinspired Nanodiscs with Many Unexpected Applications, Curr. Atheroscler. Rep., 20, 59, 10.1007/s11883-018-0759-1
Karathanasis, 2017, The Changing Face of HDL and the Best Way to Measure It, Clin. Chem., 63, 196, 10.1373/clinchem.2016.257725
Budoff, 2018, Effect of Vascepa (icosapent ethyl) on progression of coronary atherosclerosis in patients with elevated triglycerides (200-499 mg/dL) on statin therapy: Rationale and design of the EVAPORATE study, Clin. Cardiol., 41, 13, 10.1002/clc.22856
Uhlig, 2014, The emergence of peptides in the pharmaceutical business: From exploration to exploitation, EuPA Open Proteom., 4, 58, 10.1016/j.euprot.2014.05.003
Lau, 2018, Therapeutic peptides: Historical perspectives, current development trends, and future directions, Bioorganic Med. Chem., 26, 2700, 10.1016/j.bmc.2017.06.052