Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Oligonucleotid đối kháng: tiến bộ gần đây trong điều trị các bệnh khác nhau
Tóm tắt
Oligonucleotid đối kháng là một lớp tác nhân điều trị mới đầy hứa hẹn để điều trị các bệnh khác nhau ở sinh vật sống. Chúng cung cấp một phương pháp hiệu quả để tạo ra các tác nhân chọn lọc bằng cách thay đổi trình tự biểu hiện gen. Do đó, protein hoạt động sai có thể bị ngăn chặn, và nguồn gốc của bệnh sẽ bị xóa bỏ. Các bài đánh giá hiện tại về oligonucleotid đối kháng tập trung vào việc phát hiện, phát triển và khái niệm. Tuy nhiên, hiện chưa có bài đánh giá nào về sự phát triển gần đây của oligonucleotid đối kháng và các ứng dụng điều trị khác nhau của chúng. Do đó, công trình hiện tại nhắm đến việc tổng hợp toàn diện các oligonucleotid đối kháng mới được tổng hợp và hoạt động sinh học của chúng.
Oligonucleotid đối kháng khác với các tác nhân điều trị truyền thống ở chỗ chúng được thiết kế để tương tác với mRNA và điều chỉnh biểu hiện protein thông qua một cơ chế tác động độc đáo. Trong ba thập kỷ qua, nhiều nhà nghiên cứu đã phát hiện ra những oligonucleotid đối kháng mới có hiệu suất điều trị cao do tác động chọn lọc hơn vào mục tiêu thuốc và do đó sản xuất ra ít tác dụng phụ và độc tính thấp hơn. Bài đánh giá này nhấn mạnh công trình nghiên cứu về oligonucleotid đối kháng và các hoạt động điều trị của chúng. Dựa trên các tài liệu nghiên cứu, ở đây chúng tôi đã liệt kê nhiều oligonucleotid đối kháng được chuẩn bị bằng kỹ thuật thích hợp và khám phá các hoạt động dược lý của chúng. Theo như kiến thức của chúng tôi, đây là thời điểm thích hợp để xem xét oligonucleotid đối kháng như một sự lựa chọn điều trị hoàn hảo cho các bệnh khác nhau do tính đơn giản trong khái niệm, hành động chọn lọc cao hơn, ít tác dụng phụ, độc tính thấp và khả năng chữa trị vĩnh viễn.
Từ khóa
Tài liệu tham khảo
Crooke ST, Liang XH, Baker BF, Crooke RM (2021) Antisense technology: a review. J Biol Chem 296:100416. https://doi.org/10.1016/j.jbc.2021.100416
Kilanowska A, Studzinska S (2020) In vivo and in vitro studies of antisense oligonucleotides—a review. RCS Adv 10:34501–34516. https://doi.org/10.1039/D0RA04978F
Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, Bahal R (2020) Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med 9(6):1–24. https://doi.org/10.3390/jcm9062004
Crooke ST, Baker BF, Crooke RM (2021) Antisense technology: an overview and prospectus. Nat Rev Drug Discov 20:427–453. https://doi.org/10.1038/s41573-021-00162-z
Roberts TC, Langer R, Wood MJA (2020) Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 19:673–694. https://doi.org/10.1038/s41573-020-0075-7
Neil EE, Bisaccia EK (2019) Nusinersen: A novel antisense oligonucleotide for the treatment of spinal muscular atrophy. J Pediatr Pharmacol Ther 24(3):194–203. https://doi.org/10.5863/1551-6776-24.3.194
Tilahun T, Bezie Y, Kerisew B, Taye M (2021) The application of antisense technology for crop improvement: a review. Cogent Food Agric 7(1):1–17. https://doi.org/10.1080/23311932.2021.1910157
Grunweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2’-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31(12):3185–3193. https://doi.org/10.1093/nar/gkg409
Chellappan DK, Sivam NS, Xiang TK, Pan LW, Fui TZ, Ken C, Nico K, Yi FJ, Chellian J, Cheng LL, Dahiya R, Gupta G, Singhvi G, Nammi S, Hansbro PM, Dua K (2018) Gene therapy and type I diabetes mellitus. Biomed Pharmacother 108:1188–1200. https://doi.org/10.1016/j.biopha.2018.09.138
Pawlak W, Zolnierek J, Sarosiek T, Szczylik C (2000) Antisense therapy in cancer. Cancer treat Rev 26(5):333–350. https://doi.org/10.1053/ctrv.2000.0173
Klim JR, Vance C, Scotter EL (2019) Antisense oligonucleotide therapies for amyotrophic lateral sclerosis: existing and emerging targets. Int J Biochem Cell Biol 110:149–153. https://doi.org/10.1016/j.biocel.2019.03.009
Miller TM, Pestronk PA, David W, Rothstein J, Simpson E, Appel SH, Andres PL, Mahoney Kallred P, Alexander K, Ostrow W, Schoenfeld D, Macklin EA, Norris DA, Manousakis G, Crisp M, Smith R, Bennett CF, Bishop KM, Cudkowicz ME (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12(5):435–442. https://doi.org/10.1016/S1474-4422(13)70061-9
Popescu FD, Popescu F (2001) A review of antisense therapeutic interventions for molecular biological targets in asthma. Biologics 1(3):271–283
Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140. https://doi.org/10.1038/nrd3625
Dyer PDR, Shepherd TR, Gollings AS, Shorter SA, Gorringe-Pattrick MAM, Tang CK, Cattoz BN, Baillie L, Griffiths PC, Richardson SCW (2015) Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity. J Control Release 220:316–328. https://doi.org/10.1016/j.jconrel.2015.10.054
Roth CM (2005) Molecular and cellular barriers limiting the effectiveness of antisense oligonucleotides. Biophys J 89:2286–2295. https://doi.org/10.1529/biophysi.104.054080
Seth PP, Siwkowski A, Allerson CR, Vasquez G, Lee S, Prakash TP, Wancewicz EV, Witchell D, Swayze EE (2009) Short antisense oligonucleotides with novel 2’-4’ conformationally restricted nucleoside analogues show improved potency without increased toxicity in animals. J Med Chem 52(1):10–13. https://doi.org/10.1021/jm801294h
Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35(3):238–248. https://doi.org/10.1038/nbt.3765
Miroshnichenko SK, Patutina OA, Burakova EA, Chelobanov BP, Fokina AA, Vlassov VV, Altman S, Zenkova MA, Stetsenko DA (2019) Mesyl phosphoramidite antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc Natl Acad Sci USA 116(4):1229–1234. https://doi.org/10.1073/pnas.1813376116
Scoles DR, Ev M, Pulst SM (2019) Antisense oligonucleotides. Neurol Genet 5(2):e323. https://doi.org/10.1212/NXG.0000000000000323
Thoma C, Hasselblatt P, Kock J, Chang SF, Hockenjos B, Will H, Hentze MW, Blum HE, Weizsacker F, Offensperger WB (2001) Generation of stable mRNA fragments and translation of N-truncated proteins induced by antisense oligodeoxynucleotides. Mol Cell 8(4):865–872. https://doi.org/10.1016/S1097-2765(01)00364-1
Langner HK, Jastrzebska K, Caruthers MH (2020) Synthesis and characterization of thiophosphoramidate morpholino oligonucleotides and chimeras. J Am Chem Soc 142(38):16240–16253. https://doi.org/10.1021/jacs.0c04335
Ghosh C, Stein D, Weller D, Iversen P (2000) Evaluation of antisense mechanisms of action. Methods Enzymol 313:135–143. https://doi.org/10.1016/S0076-6879(00)13008-3
Green DW, Rohn H, Pippin J, Drebin JA (2000) Antisense oligonucleotides: an evolving technology for the modulation of gene expression in human disease. J Am Coll Surg 191:93–105. https://doi.org/10.1016/s1072-7515(00)00305-7
Klimuk SK, Semple SC, Nahirney PN, Mullen MC, Bennett CF, Scherrer P, Hope MJ (2000) Enhanced anti-inflammatory activity of a liposomal intercellular adhesion molecule-1 antisense oligodeoxynucleotide in an acute model of contact hypersensitivity. J Pharmacol Exp Ther 292(2):480–488 (PMID: 10640283)
Drevinek P, Pressler T, Cipolli M, Boeck KD, Schwarz C, Bouisset F, Boff M, Henig N, Maehima Paquettee-Lamontagne N, Montgomery S, Perquin J, Tomkinson N, Hollander WD, Elborn JS (2020) Antisense oligonucleotide eluforsen is safe and improves respiratory symptoms in F508DEL cystic fibrosis. J Cyst Fibros 19:99–107. https://doi.org/10.1016/j.jcf.2019.05.014
Li D, Mastaglia FL, Fletcher S, Wilton SD (2018) Precision medicine through antisense oligonucleotide-mediated exon skipping. Trends Pharmacol Sci 39(11):982–994. https://doi.org/10.1016/j.tips.2018.09.001
Burrer R, Neuman BW, Ting JPC, Stein DA, Moulton HM, Iversen PL, Kuhn P, Buchmeier MJ (2007) Antiviral effects of antisense morpholino oligomers in Murine coronavirus infection models. J Virol 81(11):5637–5648. https://doi.org/10.1128/JVI.02360-06
Chadwick DR, Lever AML (2000) Antisense RNA sequences targeting the 5’ leader packaging signal region of human immunodeficiency virus type-1 inhibits viral replication at post-transcriptional stages of the life cycle. Gene Ther 7:1362–1668. https://doi.org/10.1038/sj.gt.3301254
Kobayashi-Ishihara M, Terahara K, Martinez JP, Yamagishi M, Iwabuchi R, Brander C, Ato M, Watanabe T, Meyerhans A, Tsunetsugu-Yokota Y (2018) HIV LTR-Driven antisense RNA by itself has regulatory function and may curtail virus reactivation from latency. Front Microbiol 9:1066. https://doi.org/10.3389/fmicb.2018.01066
Markov AV, Kupryushikin MS, Goncharova EP, Amirkhanov RN, Vasilyeva SV, Pyshnyi DV, Zenkova MA, Logashenko EB (2019) Antiviral activity of a new class of chemically modified antisense oligonucleotides against influenza A virus. Russ J Bioorg Chem 45(6):774–782. https://doi.org/10.1134/S1068162019060268
Offensperger WB, Offensperger S, Blum HE (1998) Antisense therapy of hepatitis B virus infection. Mol Biotechnol 9:161–170. https://doi.org/10.1007/BF02760817
Putlitz JZ, Wieland S, Blum HE, Wands JR (1998) Antisense RNA Complementary to Hepatitis B virus specifically inhibits viral replication. Gastroenterology 115:702–713. https://doi.org/10.1016/s0016-5085(98)70150-7
Zhu L, Bi J, Zheng L, Zhao Q, Shu X, Guo G, Liu J, Yang G, Liu J, Yin G (2018) In-vitro inhibition of porcine reproductive and respiratory syndrome virus replication by short antisense oligonucleotides with locked nucleic acid modification. BMC Vet Res 14:109. https://doi.org/10.1186/s12917-018-1432-1
Liang Y, Osborne MC, Monia BP, Bhanot S, Gaarde WA, Reed C, She P, Jetton TL, Demarest KT (2004) Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53:410–417. https://doi.org/10.2337/diabetes.53.2.410
Machen J, Harnaha J, Lakomy R, Styche A, Trucco M, Giannoukakis N (2004) Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J Immunol 173:4331–4341. https://doi.org/10.4049/jimmunol.173.7.4331
Oshitari T, Polewski P, Chadda M, Li AF, Sato T, Roy S (2006) Effect of combined antisense oligonucleotides against high-glucose- and diabetes-induced overexpression of extracellular matrix components and increased vascular permeability. Diabetes 55:86–92 (PMID:16380480)
Sloop KW, Watts LM, Michael MD (2004) Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J Clin Investig 113(11):1571–1581. https://doi.org/10.1172/JCI20911
Akhavein N, Oettinger CW, Gayakwad SG, Addo RT, Bejugam NK, Bauer JD, Do D, Pollock SH, D’souza J (2009) Treatment of adjuvant arthritis using microencapsulated antisense NF-κB oligonucleotides. J Microencapsul 26(3):223–234. https://doi.org/10.1080/02652040802268691
Garcia JP, Stein J, Cai Y, Riemers F, Waxselblatt E, Wengel J, Tryfonidou M, Yayon A, Howard KA, Creemers LB (2019) Fibrin-hyaluronic acid hydrogel-based delivery of antisense oligonucleotides for ADAMTS5 inhibition in co-delivered and resident joint cells in osteoarthritis. J Control Release 294:247–258. https://doi.org/10.1016/j.jconrel.2018.12.030
Makalish TP, Golovkin IO, Oberemok VV, Laikov KV, Temirova ZZ, Serdyukova OA, Novikov IA, Rosovskyi RA, Gordienko AI, Zyablitskaya EY, Gafariva EA, Yurchenko KA, Fomochkina II, Kubyshkin AV (2021) Anti-rheumatic effect of antisense oligonucleotide cytos-11 targeting TNF-α expression. Int J Mol Sci 22:1022. https://doi.org/10.3390/ijms22031022
Morita Y, Kashihara N, Yamamura M, Okamoto H, Harada S, Maeshima Y, Okamoto K, Makino H (1997) Inhibition of rheumatoid synovial fibroblast proliferation by antisense oligonucleotides targeting proliferating cell nuclear antigen messenger RNA. Arthritis Rheum 40(7):1292–1297. https://doi.org/10.1002/1529-0131(199707)40:7%3c1292::AID-ART14%3e3.0.CO;2-8
Hildner KM, Schirmacher P, Atreya I, Dittmayer M, Bartsch B, Galle PR, Wirtz S, Neurath MF (2007) Targeting of the transcription factor STAT4 by antisense phosphorothioate oligonucleotides suppresses collagen-induced arthritis. J Immunol 178:3427–3436. https://doi.org/10.4049/jimmunol.178.6.3427
Nakamura A, Ali SA, Kapoor M (2020) Antisense oligonucleotide-based therapies for the treatment of osteoarthritis: Opportunites and roadblocks. Bone 138:115461. https://doi.org/10.1016/j.bone.2020.115461
Fortin M, Anjou HD, Higgins ME, Gougeon J, Aube P, Moktefi K, Mouissi S, Seguin S, Seguin R, Renzi PM, Paquet L, Ferrari N (2009) A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice. Respir Res 10(39):1–14. https://doi.org/10.1186/1465-9921-10-39
Karras JG, Crosby JR, Guha M, Tung D, Miller DA, Gaarde WA, Geary RS, Monia BP, Gregory SA (2007) Anti-inflammatory activity of inhaled IL-4 receptor-α antisense oligonucleotide in mice. AM JK Respir Cell Mol Biol 36:276–285. https://doi.org/10.1165/rcmb.2005-0456OC
Ramelli SC, Comer BS, McLendon JM, Sandy LL, Ferretti AP, Barrington R, Sparks J, Matar M, Fewell J, Gerthoffer WT (2020) Nanoparticle delivery of anti-inflammatory LNA oligonucleotides prevents airway inflammation in a HDM model of asthma. Mol Ther Nucleic Acid 19:1000–1014. https://doi.org/10.1016/j.omtn.2019.12.033
Donner AJ, Yeh ST, Hung G, Graham MJ, Crooke RM, Mullick AE (2015) CD40 generation 2.5 antisense oligonucleotide treatment attenuates doxorubicin-induced nephropathy and kidney inflammation. Mol Ther Nucleic Acid 4:e265. https://doi.org/10.1038/mtna.2015.40
Zorzi F, Angelucci E, Sedda S, Pallone F, Monteleone G (2013) Smad7 antisense oligonucleotide-based therapy for inflammatory bowel diseases. Dig Liver Dis 45:552–555. https://doi.org/10.1016/j.did.2012.11.011
Vanderborght B, Muynck KD, Lefere S, Geerts A, Degroote H, Verhelst X, Vilerberghe HV, Devisscher L (2020) Effect of isoform-specific HIF-1α and HIF-2α antisense oligonucleotides on tumorigenesis, inflammation and fibrosis in a hepatocellular carcinoma mouse model. Oncotarget 11(48):4504–4520. https://doi.org/10.18632/oncotarget.27830
Abaza MS, Al-Saffar A, AL-Sawan S, AL-Attiyah R, (2008) C-myc antisense oligonucleotides sensitize human colorectal cancer cells to chemotherapeutic drugs. Tumor Biol 29:287–303. https://doi.org/10.1159/000156706
Ge JH, Zhu JW, Fu HY, Shi WB, Zhang CL (2019) An antisense oligonucleotide drug targeting miR-21 induces H1650 apoptosis and caspase activation. Technol Cancer Res Treat 18:1–8. https://doi.org/10.1177/1533033819892263
Ciardiello F, Tortora G (2002) Inhibition of bcl-2 as cancer therapy. Ann Oncol 13:501–502. https://doi.org/10.1093/annonc/mdf191
Villalona-Calero MA, Ritch P, Figueroga JA, Otterson GA, Belt R, Dow E, George S, Leonardo J, McCachren S, Miller GL, Modiano M, Valdivieso M, Geary R, Jw O, Holmulund J (2004) A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-α, in combination with cisplatin and gemcitabine in patients with advanced non-small-cell lung cancer. Clin Cancer Res 10:6086–6093. https://doi.org/10.1158/1078-0432.CCR-04-0779