Antioxidant and anti-inflammatory activities of Centratherum anthelminticum (L.) Kuntze seed oil in diabetic nephropathy via modulation of Nrf-2/HO-1 and NF-κB pathway

BMC Complementary Medicine and Therapies - Tập 22 - Trang 1-17 - 2022
Nida Baig1,2, Rabia Sultan3, Shamim Akhtar Qureshi2
1Clinical Laboratory Sciences, Institute of Medical Technology, Dow University of Health Sciences, OJHA Campus, Karachi, Pakistan
2Department of Biochemistry, University of Karachi, Karachi, Pakistan
3Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan

Tóm tắt

Type 2 diabetes mellitus (T2DM) approximately constitutes 90% of the reported cases. 30-40% of diabetics eventually develop diabetic nephropathy (DN); accounting for one of the major causes of morbidity and mortality. Increased glucose autoxidation and non-enzymatic glycation of proteins in diabetic kidneys lead to the excessive generation of reactive oxygen species (ROS) that results in lipid peroxidation and activation of inflammatory mediators which overwhelms the scavenging capacity of the antioxidant defense system (Nrf2/Keap1/HO-1). Centratherum anthelminticum commonly called as kali zeeri (bitter cumin) and its seeds are well known for culinary purposes in Asia (Pakistan). It has reported anti-inflammatory, antioxidant, and anti-diabetic activities. The present study has attempted to explore the in-vivo anti-inflammatory, antioxidant and antihyperglycemic potential of the C. anthelminticum seed’s fixed oil (FO) and its fractions in high fat-high fructose-streptozotocin (HF-HFr-STZ) induced T2DM rat model. The T2DM rat model was developed by giving a high-fat and high-fructose diet followed by a single intraperitoneal injection of streptozotocin (STZ 60 mg/kg) on 28th day of the trial. After 72 hours of this injection, rats showing fasting blood glucose (FBG) levels≥230 mg/dL were recruited into six groups. These groups were orally administered distilled water (1 mL/kg), Gliclazide (200 mg/kg), Centratherum anthelminticum seed (FO) and its hexane (HF), chloroform (CF) and ethanol (EF) soluble fractions (200 mg/kg each), respectively for 4 weeks (i.e. 28 days). Blood, serum, and kidney tissue samples of euthanized animals were used for biochemical, pro-inflammatory, and antioxidant markers (ELISA, qRT-PCR, and spectrophotometric assays) and histology, respectively. C. anthelminticum FO and its fractions reduced the lipid peroxidation, and improved the antioxidant parameters: enzymatic (SOD, CAT, and GPx), non-enzymatic (GSH), and mRNA expression of anti-inflammatory markers (Nrf-2, keap1, and HO-1). mRNA expression of inflammatory and apoptotic markers (TNF-α, IL-1β, COX-1, NF-κB, Bax, and Bcl-2) were attenuated along with improved kidney architecture. C. anthelminticum can mitigate inflammation and oxidative stress in early DN. The anti-nephropathic effect can be attributed to its ability to down-regulate NF-κB and by bringing the Nrf-2 expression levels to near normal.

Tài liệu tham khảo

Saeedi P, Salpea P, Karuranga S, Petersohn I, Malanda B, Gregg EW, et al. Mortality attributable to diabetes in 20-79 years old adults, 2019 estimates: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2020;162:108086. Lin Y-C, Chang Y-H, Yang S-Y, Wu K-D, Chu T-S. Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc. 2018;117:662–75. Tonneijck L, Muskiet MH, Smits MM, Van Bommel EJ, Heerspink HJ, Van Raalte DH, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28(4):1023–39. Majid M, Masood A, Kadla SA, Hameed I, Ganai BA. Association of Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) gene with type 2 diabetes mellitus in ethnic Kashmiri population. Biochem Genet. 2017;55:10–21. Bhattacharyya C, Majumder PP, Pandit B. CXCL10 is overexpressed in active tuberculosis patients compared to M. tuberculosis-exposed household contacts. Tuberculosis. 2018;109:8–16. MacIsaac RJ, Jerums G, Ekinci EI. Effects of glycaemic management on diabetic kidney disease. World J Diabetes 2017. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5437616/ Tavafi M. Diabetic nephropathy and antioxidants. J Nephropathol. 2013;2:20–7. Kandhare AD, Mukherjee A, Bodhankar SL. Antioxidant for treatment of diabetic nephropathy: a systematic review and meta-analysis. Chem Biol Interact. 2017;278:212–21. Heerspink HJL, De Zeeuw D. Novel anti-inflammatory drugs for the treatment of diabetic kidney disease. Diabetologia. 2016;59:1621–3. Xue R, Gui D, Zheng L, Zhai R, Wang F, Wang N. Mechanistic insight and Management of Diabetic Nephropathy: recent Progress and future perspective. J Diabetes Res. 2017;2017:1839809. Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KAM, Zoungas S, et al. Diabetic kidney disease. Nat. Rev. Dis. Primers. 2015;1:1–20. Jiang G, Luk AOY, Tam CHT, Xie F, Carstensen B, Lau ESH, et al. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with type 2 diabetes. Kidney Int. 2019;95:178–87. Anders H-J, Huber TB, Isermann B, Schiffer M. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. 2018;14:361–77. Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms. Pharmacol Res. 2018;130:451–65. Unuofin JO, Lebelo SL. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxidative Med Cell Longev. 2020;2020:1356893. Nagaraju N, Rao KN. Folk - medicine for diabetes from rayalaseema of Andhra Pradesh. Anc Sci Life. 1989;9:31–5. Dogra NK, Kumar S, Kumar D. Vernonia anthelmintica (L.) Willd: an ethnomedicinal, phytochemical, pharmacological and toxicological review. J Ethnopharmacol. 2020;256:112777. Basha E, O’Neill H, Vierling E. Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci. 2012;37:106–17. Patnaik S, Bhatnagar S. Evaluation of Cytotoxic and Antioxidant properties and Phytochemical analysis of Vernonia anthelmentica. Int J Biosci Psychiatr Technol. 2015;8(1):1. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M-V, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–48. Dailiah Roopha P, Padmalatha C. Effect of herbal preparation on heavy metal (cadmium) induced antioxidant system in female Wistar rats. J Med Toxicol. 2012;8:101–7. Bedi O, Bijjem KRV, Kumar P, Gauttam V. Herbal induced Hepatoprotection and hepatotoxicity: a critical review. Indian J Physiol Pharmacol. 2016;60:6–21. Fernando CD, Karunaratne DT, Gunasinghe SD, Cooray MCD, Kanchana P, Udawatte C, et al. Inhibitory action on the production of advanced glycation end products (AGEs) and suppression of free radicals in vitro by a Sri Lankan polyherbal formulation Nawarathne Kalka. BMC Complement Altern Med. 2016;16:197. Huang X, Ishikawa M, Mansur A, Emet A, Nasir E, Semet R, et al. The effects of Bairesi complex prescription (a Uyghur medicine prescription) and its five crude herbal extracts on Melanogenesis in G-361 cells. Evid Based Complement Alternat Med. 2016;2016:8415359. Ma ZQ, Hu H, He TT, Guo H, Zhang MY, Chen MW, et al. An assessment of traditional Uighur medicine in current Xinjiang region (China). Afr J Tradit Complement Altern Med. 2014;11:301–14. Pavani M, Rao MS, Nath MM, Rao CA. Ethnobotanical explorations on anti-diabetic plants used by tribal inhabitants of Seshachalam forest of Andhra Pradesh, India. Indian J Fund Appl Life Sci. 2012;2:100–5. Sabu MC. Antioxidant activity of Indian herbal drugs in rats with Aloxan-induced diabetes. Pharm Biol. 2003;41:500–5. Bhatia D, Gupta MK, Bharadwaj A, Pathak M, Kathiwas G, Singh M. Anti-diabetic activity of Centratherum anthelminticum kuntze on alloxan induced diabetic rats. Pharmacologyonline. 2008;3:1–5. Ani V, Naidu KA. Antihyperglycemic activity of polyphenolic components of black/bitter cumin Centratherum anthelminticum (L.) Kuntze seeds. Eur Food Res Technol. 2008;226:897–903. Fatima SS, Rajasekhar MD, Kumar KV, Kumar MTS, Babu KR, Rao CA. Antidiabetic and antihyperlipidemic activity of ethyl acetate:isopropanol (1:1) fraction of Vernonia anthelmintica seeds in streptozotocin induced diabetic rats. Food Chem Toxicol. 2010;48:495–501. Lateef T, Qureshi SA. Centratherum anthelminticum ameliorates antiatherogenic index in hyperlipidemic rabbits. Int J Pharm. 2013;3:698–704. Otari KV, Shete RV, Upasani CD, Adak VS, Bagade MY, Harpalani AN. Evaluation of anti-inflammatory and anti-ArthriticActivities of Ethanolic extract of Vernonia Anthelmintica seeds. Cell Tissue Res. 2010;10. Santosh CH, Attitalla IH, Mohan MM. Phytochemical analysis, antimicrobial and antioxidant activity of ethanolic extract of Vernonia anthelmintica. Int J Pharma Bio Sci. 2013;1:960–6. Ediriweera E, Ratnasooriya WD, Others. A review on herbs used in treatment of diabetes mellitus by Sri Lankan ayurvedic and traditional physicians. Ayu. 2009;30:373–91. Singh J, Bargale PC. Development of a small capacity double stage compression screw press for oil expression. J Food Eng. 2000;43:75–82. Acute Oral Toxicity (OECD Test Guideline 425) (AOT), 2001. Statistical Programme (AOT425StatPgm), Version 1.0. http://www.oecd.org/oecd/pages/home/displaygeneral/0,3380,EN-document-524-nodirectorate-no-24-6775-8,FF.html. Anesthesia (Guideline). [cited 23 Nov 2021]. Available: https://animal.research.uiowa.edu/iacuc-guidelines-anesthesia Islam MA, Akhtar MA, Khan MR-I, Hossain MS, Alam AHMK, Ibne-Wahed MI, et al. Oral glucose tolerance test (OGTT) in normal control and glucose induced hyperglycemic rats with Coccinia cordifolia l. and Catharanthus roseus L. Pak J Pharm Sci. 2009;22:402–4. Mudassir HA, Qureshi SA. Centratherum anthelminticum minimizes the risk of insulin resistance in fructose-induced type 2 diabetes. J Basic Appl Pharm Sci. 2015;5:074–8. Yoo S, Ahn H, Park YK. High dietary fructose intake on cardiovascular disease related parameters in growing rats. Nutrients. 2016:9. https://doi.org/10.3390/nu9010011. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9. Okoduwa SIR, Umar IA, James DB, Inuwa HM. Anti-diabetic potential of Ocimum gratissimum leaf fractions in fortified diet-fed Streptozotocin treated rat model of Type-2 diabetes. Medicines (Basel). 2017:4. Krause WJ. The art of examining and interpreting histologic preparations: a student handbook: CRC Press: Universal Publisher; 2001. Alam MB, et al. Thank you, a good research antioxidant, antimicrobial and toxicity studies of the different fractions of fruits of Terminalia belerica Roxb. Glob J Pharmacol. 2011;5:7–17. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94. Rao AV, Ramakrishnan S. Indirect assessment of hydroxymethylglutaryl-CoA reductase (NADPH) activity in liver tissue. Clin Chem. 1975;21:1523–5. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Sci. 1973;179:588–90. Qureshi SA, Nawaz A, Udani SK, Azmi B. Hypoglycaemic and hypolipidemic activities of Rauwolfia serpentina in alloxan-induced diabetic rats. Int J Pharmacol. 2009;5:323–6. Mudassir HA, Qureshi SA, Azmi MB, Ahsan M. Ethanolic seeds extract of Centratherum anthelminticum reduces oxidative stress in type 2 diabetes. Pak J Pharm Sci. 2018;31:991–5. Lateef T, Qureshi SA. Ameliorative Effect of Withania coagulans on Experimentally-Induced Hyperlipidemia in Rabbits. J. Nat. Remedies http://paperpile.com/b/dGlO2o/2PPJl 2013;14: 83–88. Qureshi SA, Rais S, Usmani R. Centratherum anthelminticum seeds reverse the carbon tetrachloride-induced hepatotoxicity in rats. Afr J Pharm Pharmacol. 2016;10(26):533–9. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26:77–82. Kashihara N, Haruna Y, Kondeti VK, Kanwar YS. Oxidative stress in diabetic nephropathy. Curr Med Chem. 2010;17:4256–69. Arya A, Cheah SC, Looi CY, Taha H, Mustafa MR, Mohd MA. The methanolic fraction of Centratherum anthelminticum seed downregulates pro-inflammatory cytokines, oxidative stress, and hyperglycemia in STZ-nicotinamide-induced type 2 diabetic rats. Food Chem Toxicol. 2012;50:4209–20. Arya A, Looi CY, Cheah SC, Mustafa MR, Mohd MA. Anti-diabetic effects of Centratherum anthelminticum seeds methanolic fraction on pancreatic cells, β-TC6 and its alleviating role in type 2 diabetic rats. J Ethnopharmacol. 2012;144:22–32. Jiang T, Huang Z, Lin Y, Zhang Z, Fang D, Zhang DD. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59:850–60. Kansanen E, Kivelä AM, Levonen AL. Regulation of Nrf2-dependent gene expression by 15-deoxy-Δ12,14-prostaglandin J2. Free Radic Biol Med. 2009;47:1310–7. Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47:1304–9. Itoh K, Ishii T, Wakabayashi N, Yamamoto M. Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res. 1999;31:319–24. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet. 2003;35:238–45. Suzuki T, Yamamoto M. Molecular basis of the Keap1–Nrf2 system. Free Radic. Biol. Med. 2015;88:93–100. Yang L, Palliyaguru DL, Kensler TW. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Semin Oncol. 2016;43:146–53. Hahn ME, Timme-Laragy AR, Karchner SI, Stegeman JJ. Nrf2 and Nrf2-related proteins in development and developmental toxicity: insights from studies in zebrafish (Danio rerio). Free Radic Biol Med. 2015;88:275–89. Mohan T, Narasimhan KKS, Ravi DB, Velusamy P, Chandrasekar N, Chakrapani LN, et al. Role of Nrf2 dysfunction in the pathogenesis of diabetic nephropathy: therapeutic prospect of epigallocatechin-3-gallate. Free Radic. Biol. Med. 2020;160:227–38. Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov. 2004;3:17–26. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood. 2012;120:5188–98. Huang Z, Mou Y, Xu X, Zhao D, Lai Y, Xu Y, et al. Novel derivative of Bardoxolone methyl improves safety for the treatment of diabetic nephropathy. J Med Chem. 2017;60:8847–57. Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest. 2004;114:1248–59. He X, Ma Q. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol Pharmacol. 2012;82:887–97. Lateef T, Sa Q. Centratherum anthelminticum and Withania coagulans improves lipid profile and oxidative stress in triton X-100 induced hyperlipidemic rabbits. Int. J. Pharmacogn. Phytochem. Res. 2016;8(6):933–40. Miao W, et al. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem. 2005;280(21):20340–8. Kwak M-K, Itoh K, Yamamoto M, Kensler TW. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol. 2002;22:2883–92. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol basis Dis. 2017;1863:585–97. Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans. 2015;43:621–6. Cuadrado A, Martín-Moldes Z, Ye J, Lastres-Becker I. Transcription factors NRF2 and NF-κB are coordinated effectors of the rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem. 2014;289:15244–58. Bao L, Li J, Zha D, Zhang L, Gao P, Yao T, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. Int Immunopharmacol. 2018;54:245–53.