Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential

Aleksandar Rašković1, Isidora Milanović2, Nebojša Pavlović1, Tatjana Ćebović3, Saša Vukmirović1, Momir Mikov1
1Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
2High Medical School of Professional Skills, Zemun, Serbia
3Clinical Center of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

Tóm tắt

Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride - induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride - induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of physiological defense mechanisms.

Từ khóa


Tài liệu tham khảo

Corsini A, Bortolini M: Drug-induced liver injury: the role of drug metabolism and transport. J Clin Pharmacol. 2013, 53: 463-474.

Gu X, Manautou JE: Molecular mechanisms underlying chemical liver injury. Expert Rev Mol Med. 2012, 14: e4-

Tanikawa K, Torimura T: Studies on oxidative stress in liver diseases: important future trends in liver research. Med Mol Morphol. 2006, 39: 22-27. 10.1007/s00795-006-0313-z.

Zhu R, Wang Y, Zhang L, Guo Q: Oxidative stress and liver disease. Hepatol Res. 2012, 42: 741-749. 10.1111/j.1872-034X.2012.00996.x.

Zhang A, Sun H, Wang X: Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem. 2013, 63: 570-577.

Al-Sereiti MR, Abu-Amer KM, Sen P: Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol. 1999, 37: 124-130.

Yu MH, Choi JH, Chae IG, Im HG, Yang SA, More K, Lee IS, Lee J: Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L. Food Chem. 2013, 136: 1047-1054. 10.1016/j.foodchem.2012.08.085.

Ngo SN, Williams DB, Head RJ: Rosemary and cancer prevention: preclinical perspectives. Crit Rev Food Sci Nutr. 2011, 51: 946-954. 10.1080/10408398.2010.490883.

Teixeira B, Marques A, Ramos C, Neng NR, Nogueira JMF, Saraiva JA, Nunes ML: Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind Crop Prod. 2013, 43: 587-595.

Kadri A, Zarai Z, Ben Chobba I, Bekir A, Gharsallah N, Damak M, Gdoura R: Chemical constituents and antioxidant properties of Rosmarinus officinalis L. essential oil cultivated from South-Western Tunisia. J Med Plants Res. 2011, 5: 5999-6004.

Bozin B, Mimica-Dukic N, Samojlik I, Jovin E: Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem. 2007, 55: 7879-7885. 10.1021/jf0715323.

Prabuseenivasan S, Jayakumar M, Ignacimuthu S: In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006, 6: 39-10.1186/1472-6882-6-39.

Ojeda-Sana AM, van Baren CM, Elechosa MA, Juarez MA, Moreno S: New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control. 2013, 31: 189-195. 10.1016/j.foodcont.2012.09.022.

European Medicines Agency: Community herbal monograph on Rosmarinus officinalis L., aetheroleum. 2010, [http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_Community_herbal_monograph/2011/01/WC500101493.pdf]

Takaki I, Bersani-Amado LE, Vendruscolo A, Sartoretto SM, Diniz SP, Bersani-Amado CA, Cuman RK: Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J Med Food. 2008, 11: 741-746. 10.1089/jmf.2007.0524.

Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Bettio LE, Oliveira A, Pazini FL, Dalmarco JB, Simionatto EL, Pizzolatti MG, Rodrigues AL: Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem. 2013, 136: 999-1005. 10.1016/j.foodchem.2012.09.028.

Moss M, Cook J, Wesnes K, Duckett P: Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int J Neurosci. 2003, 113: 15-38. 10.1080/00207450390161903.

Slameňová D, Horváthová E, Kováčiková Z, Kozics K, Hunáková L: Essential rosemary oil protects testicular cells against DNA-damaging effects of H2O2 and DMNQ. Food Chem. 2011, 129: 64-70. 10.1016/j.foodchem.2011.04.020.

Wang W, Li N, Luo M, Zu Y, Efferth T: Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules. 2012, 17: 2704-2713. 10.3390/molecules17032704.

Sotelo-Félix JI, Martinez-Fong D, Muriel P, Santillán RL, Castillo D, Yahuaca P: Evaluation of the effectiveness of Rosmarinus officinalis (Lamiaceae) in the alleviation of carbon tetrachloride-induced acute hepatotoxicity in the rat. J Ethnopharmacol. 2002, 81: 145-154. 10.1016/S0378-8741(02)00090-9.

Amin A, Hamza AA: Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia on azathioprine-induced toxicity in rats. Life Sci. 2005, 77: 266-278. 10.1016/j.lfs.2004.09.048.

Gutiérrez R, Alvarado JL, Presno M, Pérez-Veyna O, Serrano CJ, Yahuaca P: Oxidative stress modulation by Rosmarinus officinalis in CCl4-induced liver cirrhosis. Phytother Res. 2010, 24: 595-601.

Council of Europe, European Pharmacopoeia Commission European Directorate for the Quality of Medicines & Healthcare: European Pharmacopoeia. 2002, Strasbourg: Council of Europe, 4

Brand-Wiliams W, Cuvelier ME, Berset C: Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol. 1995, 28: 25-30. 10.1016/S0023-6438(95)80008-5.

Kroyer GT: Red Clover extract as antioxidant active and functional food ingredient. Innov Food Sci Emerg Technol. 2004, 5: 101-105. 10.1016/S1466-8564(03)00040-7.

Popović M, Kaurinović B, Jakovljević V, Rašković A: Effect of dandelion flower extracts on some biochemical parameters of oxidative stress in rats treated with CCl4. Fresen Environ Bull. 2008, 17: 74-78.

Buege AJ, Aust DS: Microsomal lipid peroxidation. Methods in Enzymology. Edited by: Fleischer S, Parker L. 1978, New York: Academic Press

Kapetanović IM, Mieyal JJ: Inhibition of acetaminophen-induced hepatotoxicity by phenacetin and its alkoxy analogs. J Pharmacol Exp Ther. 1979, 209: 25-30.

Beers RFJ, Sizer JW: Spectrophotometric method for measuring of breakdown of hydrogen peroxide by catalase. J Biol Chem. 1950, 195: 133-140.

Simon LM, Fatrai Z, Jonas DE, Matkovics B: Study of metabolism enzymes during the development of Phaseolus vulgaris. Plant Physiol Biochem. 1974, 166: 389-393.

Beutler E: Red Cell Metabolism: A manual of biochemical methods. 1984, New York: Grune & Stratton

Goldberg DM, Spooner RJ: Glutathione reductase. Methods of enzymatic analysis. Volume 111. Edited by: Bergmeyer HU, Bergmeyer J, GraRI M. 1983, Weinhem, Germany: Verlag Chemie, 258-265. 3

Viuda-Martos M, Ruiz Navajas Y, Sánchez Zapata E, Fernández-López J, Pérez-Álvarez JA: Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Frag J. 2010, 25: 13-19. 10.1002/ffj.1951.

Wang W, Wu N, Zu YG, Fu YJ: Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 2008, 108: 1019-1022. 10.1016/j.foodchem.2007.11.046.

Guimarães AG, Quintans JS, Quintans LJ: Monoterpenes with analgesic activity–a systematic review. Phytother Res. 2013, 27: 1-15. 10.1002/ptr.4686.

Tisserand R, Young R: Essential Oil Safety: A Guide for Health Care Professionals. 2013, London: Churchill Livingstone, 2

Gyoubu K, Miyazawa M: In vitro metabolism of (−)-camphor using human liver microsomes and CYP2A6. Biol Pharm Bull. 2007, 30: 230-233. 10.1248/bpb.30.230.

Türkez H, Aydin E: In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicol Ind Health. in press

Bonkovsky HL, Cable EE, Cable JW, Donohue SE, White EC, Greene YJ, Lambrecht RW, Srivastava KK, Arnold WN: Porphyrogenic properties of the terpenes camphor, pinene, and thujone (with a note on historic implications for absinthe and the illness of Vincent van Gogh). Biochem Pharmacol. 1992, 43: 2359-2368. 10.1016/0006-2952(92)90314-9.

Sakr SA, Lamfon HA: Protective effect of rosemary (Rosmarinus Officinalis) leaves extract on carbon tetrachloride-induced nephrotoxicity in albino rats. Life Sci J. 2012, 9: 779-785.

Horváthová E, Slameňová D, Navarová J: Administration of rosemary essential oil enhances resistance of rat hepatocytes against DNA-damaging oxidative agents. Food Chem. 2010, 123: 151-156. 10.1016/j.foodchem.2010.04.022.

Hsiao G, Shen MY, Lin KH, Lan MH, Wu LY, Chou DS, Lin CH, Su CH, Sheu JR: Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J Agric Food Chem. 2003, 51: 3302-3308. 10.1021/jf021159t.

Halliwell B, Gutteridge JM: Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984, 219: 1-14.

Santos FA, Silva RM, Tomé AR, Rao VS, Pompeu MM, Teixeira MJ, De Freitas LA, De Souza VL: 1,8-cineole protects against liver failure in an in-vivo murine model of endotoxemic shock. J Pharm Pharmacol. 2001, 53: 505-511. 10.1211/0022357011775604.

Ciftci O, Ozdemir I, Tanyildizi S, Yildiz S, Oguzturk H: Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health. 2011, 27: 447-453. 10.1177/0748233710388452.

Santos FA, Silva RM, Campos AR, De Araújo RP, Lima Júnior RC, Rao VS: 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem Toxicol. 2004, 42: 579-584. 10.1016/j.fct.2003.11.001.

The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6882/14/225/prepub