Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hoạt động chống oxy hóa và tác dụng bảo vệ của các phân đoạn peptide từ Saccharomyces cerevisiae đối với stress oxy hóa do H2O2 gây ra trong tế bào Caco-2
Tóm tắt
Stress oxy hóa là một trong những nguyên nhân chính gây ra một số bệnh nghiêm trọng và sự hư hỏng của thực phẩm. Các hydrolysate protein chứa peptide chống oxy hóa là ứng cử viên phù hợp để thay thế chất chống oxy hóa tổng hợp. Trong nghiên cứu hiện tại, các tính chất chống oxy hóa in vitro và tế bào của hydrolysate protein Saccharomyces cerevisiae và các phân đoạn peptide đã được báo cáo. Vai trò bảo vệ của peptide được đánh giá trong các tế bào Caco-2 bị kích thích bởi H2O2 để xem xét khả năng sống sót của tế bào, sự oxy hóa lipid và protein trong tế bào, cùng với mức độ enzyme chống oxy hóa tế bào như Catalase (CAT) và Glutathione-S-transferase (GST). Các phân đoạn peptide cho thấy sức mạnh chống oxy hóa giảm thiểu sắt đáng kể (67,10–93,52 µm FeSO4/mg protein), và phân đoạn peptide < 3 kDa với hiệu ứng ức chế 59,5% vào ngày thứ 7, cho thấy hoạt động ức chế nhiều nhất đối với sự peroxy hóa axit linoleic. Các phân đoạn siêu lọc (< 3 kDa và 3–5 kDa) đã làm giảm đáng kể (P ≤ 0,05) các mức độ malondialdehyde (MDA) và carbonyl protein cũng như sự sản xuất của enzyme CAT và GST như là các phản ứng bảo vệ của tế bào dưới stress oxy hóa do H2O2. Nghiên cứu này xác nhận hoạt động chống oxy hóa của hydrolysate protein nấm men và các phân đoạn peptide của chúng, cùng với khả năng giảm stress oxy hóa tế bào, từ đó xác thực tiềm năng sử dụng của chúng như là một thành phần quý giá trong thực phẩm chức năng.
Từ khóa
#Stress oxy hóa #Saccharomyces cerevisiae #peptide chống oxy hóa #H2O2 #enzyme chống oxy hóa #tế bào Caco-2Tài liệu tham khảo
P. Pietta, Flavonoids as antioxidants. J. Nat. Prod. 63, 1035–1042 (2000)
M.N. Diaz, B. Frei, J.A. Vita, J.R. Keaney, Antioxidants and atherosclerotic heart disease. N. Engl. J. Med. 337, 408–416 (1997)
A.M. Giuffrè, C. Zappia, M. Capocasale, Physicochemical stability of blood orange juice during frozen storage. Int. J. Food Prop. 20, 1930–1943 (2017)
U. Szymanowska, B. Baraniak, A. Bogucka-Kocka, Antioxidant, anti-inflammatory, and postulated cytotoxic activity of phenolic and anthocyanin-rich fractions from Polana Raspberry (Rubus idaeus L.) fruit and juice-in vitro study. Molecules 23, E1812 (2018)
A. Caridi, R. Sidari, A.M. Giuffre, T.M. Pellicano, V. Sicari, C. Zappia, M. Poinanaet, Test of four generations of Saccharomyces cerevisiae concerning their effect on antioxidant phenolic compounds in wine. Eur. Food Res. Technol. 243, 1287–1294 (2007)
C. Torres-Fuentes, M.D. MarContreras, Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chem. 180, 194–202 (2015)
A. DaValos, M. Miguel, B. Bartolome, R. Lopez-Fandino, Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Pro. 67, 1939–1944 (2004)
H.L. Jang, A.M. Liceaga, K.Y. Yoon, Purification, characterization and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus) protein hydrolysates. J. Funct. Foods 20, 433–442 (2016)
I.D. Nwachukwu, R.E. Aluko, Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 43, e12761 (2019)
R.J. Elias, S.S. Kellerby, E.A. Decker, Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 48, 430–441 (2008)
M. Mirzaei, S. Mirdamadi, M.R. Ehsani, M. Aminlari, E. Hosseini, Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. J. Funct. Foods 19, 259–268 (2015)
M. Mirzaei, S. Mirdamadi, M.R. Ehsani, M. Aminlari, Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: purification and molecular docking. J. Food Drug Anal. 26, 696–705 (2017)
J.M. Alcaide-Hidalgo, E. Pueyo, M.C. Polo, A.J. Martinez-Rodriguez, Bioactive peptides released from Saccharomyces cerevisiae under accelerated autolysis in a wine model system. J. Food Sci. 72, 276–279 (2007)
A. Moure, H. Domínguez, J. Parajó, Antioxidant properties of ultrafiltrationrecovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41, 447–456 (2006)
Z. Qian, W. Jung, S. Kim, Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin Rana catesbeiana Shaw. Bioresour. Technol. 99, 1690–1698 (2008)
C. Wu, H. Chen, C. Shiau, Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36, 949–957 (2003)
N. Rajapakse, E. Mendis, W.K. Jung, J.Y. Je, S.K. Kim, Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 38, 175–182 (2005)
Y. Shi, J.K. Nolan, B. Jiang, R. Tsao, Y. Mine, Peptides derived from eggshell membrane improve antioxidant enzyme activity and glutathione synthesis against oxidative damage in Caco-2 cells. J. Funct. Foods 11, 571–580 (2014)
M. Homayouni-Tabrizi, A. Asoodeh, M. Soltani, Cytotoxic and antioxidant capacity of camel milk peptides: effects of isolated peptide on superoxide dismutase and catalase gene expression. J. Food Drug Anal. 25, 567–575 (2017)
H. Yin, X. Pan, Z. Song, S. Wang, L. Yang, G. Sun, Protective effect of wheat peptides against indomethacin-induced oxidative stress in IEC-6 cells. Nutrients 6, 564–574 (2014)
B. Ryu, S.W. Himaya, Z.J. Qian, S.H. Lee, S.K. Kim, Prevention of hydrogen peroxide-induced oxidative stress in HDF cells by peptides derived from seaweed pipefish, Syngnathus schlegeli. Peptides 32, 639–647 (2011)
C. Wiriyaphan, H. Xiao, E.A. Decker, J. Yongsawatdigul, Chemical and cellular antioxidative properties of threadfin bream (Nemipterus spp.) surimi byproduct hydrolysates fractionated by ultrafiltration. Food Chem. 15, 7–15 (2015)
A.L. Rao, G.G. Sankar, Caco-2 cells: an overview. Asian J. Pharm. Res. Health Care 1, 260–275 (2009)
I.F.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal. Biochem. 239, 70–76 (1996)
T. Osawa, M. Namiki, A novel yype of antioxidant isolated from leaf wax of leaves. Agric. Biol. Chem. 45, 735–739 (1981)
H. Mitsuda, K. Yasumoto, K. Iwami, Antioxidative action of indole compounds during the autoxidation of Linoleic acid. Eiyo To Shokuryo 19, 210–214 (1966)
T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983)
G. Colombo, M. Clerici, M.E. Garavaglia, D. Giustarini, R. Rossi, A. Milzani, I. Dalle-Donne, A step-by-step protocol for assaying protein carbonylation in biological samples. J. Chromatogr. B 15, 178–190 (2015)
H. Aebi, Catalase in vitro. Methods Enzymol. 105, 121–126 (1984)
W.H. Habig, M.J. Pabst, W.B. Jakoby, Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974)
H.M.M. Hassan, Antioxidant and immunostimulating activities of yeast (Saccharomyces cerevisiae) autolysates. World Appl. Sci. J. 15, 1110–1119 (2011)
E.Y. Jung, H.S. Lee, J.W. Choi, K.S. Ra, M.R. Kim, H.J. Suh, Glucose tolerance and antioxidant activity of spent brewer's yeast hydrolysate with a high content of Cyclo-His-Pro (CHP). J. Food Sci. 76, 272–278 (2011)
R. Yang, X. Li, S. Lin, Z. Zhang, F. Chen, Identification of novel peptides from 3 to 10 kDa pine nut (Pinus koraiensis) meal protein, with an exploration of the relationship between their antioxidant activities and secondary structure. Food Chem. 219, 311–320 (2017)
D. Huang, B. Ou, R.L. Prior, The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856 (2005)
A.G.P. Samaranayaka, E.C.Y. Li-Chan, Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J. Funct. Foods 3, 229–254 (2011)
A.T. Girgih, C.C. Udenigwe, R.E. Aluko, In vitro antioxidant properties of Hemp seed (Cannabis sativa L.) protein hydrolysate fractions. J. Am. Oil Chem. Soc. 88, 381–389 (2011)
A. Bougatef, N. Nedjar-Arroume, L. Manni, R. Ravallec, A. Barkia, D. Guillochon, M. Nasri, Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem. 118, 559–565 (2010)
J.-Y. Je, P.-J. Park, S.-K. Kim, Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 38, 45–50 (2005)
H.-M. Chen, K. Muramoto, F. Yamauchi, K. Nokihara, Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44, 2619–2623 (1996)
Q. Sun, H. Shen, Y. Luo, Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. J. Food Sci. Technol. 48, 53–60 (2011)
M. Chalamaiah, W. Yu, J. Wu, Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem. 245, 205–222 (2018)
G. Longjian, Z. Mouming, L. Wenzhi, Y. Lijun, W. Jufang, W. Haiyan, R. Jiaoyan, Chemical and cellular antioxidant activity of two novel peptides designed based on glutathione structure. Food Chem. Toxicol. 50, 4085–4091 (2012)
D. Janero, Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 9, 515–540 (1990)
D. Weber, M.J. Davies, T. Grune, Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol. 5, 367–380 (2015)
B. Kong, X. Peng, Y.L. Xiong, X. Zhao, Protection of lung fibroblast MRC-5 cells against hydrogen peroxide-induced oxidative damage by 01–28kDa antioxidative peptides isolated from whey protein hydrolysate. Food Chem. 135, 540–547 (2012)
X.-H. Zhao, Y. Fu, N. Yue, In vitro cytoprotection of modified casein hydrolysates by plastein reaction on rat hepatocyte cells. CyTA J. Food 12, 40–47 (2014)
K. Sowmya, M.L. Bhat, R.K. Bajaj, S. Kapila, R. Kapila, Buffalo milk casein derived decapeptide (YQEPVLGPVR) having bifunctional anti-inflammatory and antioxidative features under cellular milieu. Int. J. Peptide Res. Ther. 25, 623–633 (2018)
A. Dua, N. Kaur, P. Gupta, A. Mittall, S.K. Gupta, Oxidative stress induced cell damage and antioxidant enzyme response in human lymphocytes. Int. J. Pharm. Biol. Arch. 8, 33–39 (2017)
S.S. Wijeratne, S.L. Cuppett, V. Schlegel, Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. J. Agric. Food Chem. 53, 8768–8774 (2005)
N. Polidoros Alexios, G. Scandalios John, Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L). Physiologia. Plantarum 106, 112–120 (2002).
S. Katayama, S. Ishikawa, M.Z. Fan, Y. Mine, Oligophosphopeptides derived from egg yolk phosvitin up-regulate gamma-glutamylcysteine synthetase and antioxidant enzymes against oxidative stress in Caco-2 cells. J. Agric. Food Chem. 55, 2829–2835 (2007)
E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci, Oxidative stress and antioxidant defense. WAO J. 5, 9–19 (2012)