Antioxidant activity and α-glucosidase inhibitability of Distichochlamys citrea M.F. Newman rhizome fractionated extracts: in vitro and in silico screenings

Chemical Papers - Tập 76 - Trang 5655-5675 - 2022
Tran Van Chen1, To Dao Cuong2, Phan Tu Quy3, Thanh Q. Bui4, Le Van Tuan5, Nguyen Van Hue6, Nguyen Thanh Triet7, Duc Viet Ho8, Nguyen Chi Bao9, Nguyen Thi Ai Nhung4
1Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
2Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, Vietnam
3Department of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot, Vietnam
4Department of Chemistry, University of Sciences, Hue University, Hue City, Vietnam
5Department of Environmental Science, University of Sciences, Hue University, Hue City, Vietnam
6Faculty of Engineering and Food Technology, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
7Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
8Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam

Tóm tắt

Distichochlamys citrea M.F. Newman (commonly known as “Black Ginger”) is an endemic plant to Vietnam and has been extensively exploited by folk medication for treatments of infection-related diseases and diabetes. In this work, its rhizomes were subjected to fractionated extraction, phytochemical examination, evaluation of antioxidant effect by DDPH free radical neutralization, and inhibitory activity toward α-glucosidase. The compositional components were subjected to in silico screening, including density functional theory calculation, molecular docking simulation, physicochemical analysis, and pharmacokinetic regression. In the trials, EtOAc fraction is found as the bioactive part of most effectiveness, regarding both antioxidant effect (IC50 = 90.27 µg mL−1) and α-glucosidase inhibitory activity (IC50 = 115.75 μg mL−1). Chemical determination reveals there are 13 components of its composition. DFT-based calculations find no abnormal constraints in their structures. Docking-based simulation provides order of inhibitory effectiveness: 3-P53341 > 12-P53341 > 7-P53341 > 4-P53341 > 11-P53341 > 10-P53341. QSARIS-based investigations implicate their biocompatibility. ADMET-based regressions indicate that all candidates are generally safe for medicinal applications. The findings would contribute to the basis for further studies on the chemical compositions of Distichochlamys citrea and their biological activities.

Tài liệu tham khảo

Abdullah NH, Salim F, Ahmad R (2016) Chemical constituents of Malaysian U cordata var ferruginea and their in vitro α-glucosidase inhibitory activities. Molecules 21(5):525. https://doi.org/10.3390/molecules21050525 Ahsan MJ, Samy JG, Khalilullah H, Nomani MS, Saraswat P, Gaur R, Singh A (2011) Molecular properties prediction and synthesis of novel 1, 3, 4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorganic Med Chem Lett 21(24):7246–7250. https://doi.org/10.1016/j.bmcl.2011.10.057 Akmal M, Wadhwa R (2021) Alpha glucosidase inhibitors. StatPearls [Internet]. PMID: 32496728. https://www.ncbi.nlm.nih.gov/books/NBK557848/ Alam F, Islam MA, Kamal MA, Gan SH (2018) Updates on managing type 2 diabetes mellitus with natural products: towards antidiabetic drug development. Curr Med Chem 25(39):5395–5431. https://doi.org/10.2174/0929867323666160813222436 American Diabetes Association (2018) 2 Classification and diagnosis of diabetes: standards of medical care in diabetes–2018 Diabetes care 41(Supplement_1), S13-S27 https://doi.org/10.2337/dc18-S002 Ban JO, Hwang IG, Kim TM, Hwang BY, Lee US, Jeong HS, Hong JT (2007) Anti-proliferate and pro-apoptotic effects of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-κB in human colon cancer cells. Arch Pharm Res 30(11):1455–1463. https://doi.org/10.1007/BF02977371 Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R (2021) Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals 14(8):806. https://doi.org/10.3390/ph14080806 Bouchelaghem S, Das S, Naorem RS, Czuni L, Papp G, Kocsis M (2022) Evaluation of total phenolic and flavonoid contents, antibacterial and antibiofilm activities of Hungarian Propolis ethanolic extract against Staphylococcus aureus. Molecules 27(2):574. https://doi.org/10.3390/molecules27020574 C.I Methodology of Analysis of Vegetable and Drugs (1984) Rumania: Ministry of Chemical Industry, Bucharest Chen Z, Liu Q, Zhao Z, Bai B, Sun Z, Cai L, Xi G (2021) Effect of hydroxyl on antioxidant properties of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4 H-pyran-4-one to scavenge free radicals. RSC Adv 11(55):34456–34461. https://doi.org/10.1039/D1RA06317K Choudhary A, Kumar V, Kumar S, Majid I, Aggarwal P, Suri S (2021) 5-Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: recent developments. Toxin Rev 40(4):545–561. https://doi.org/10.1080/15569543.2020.1756857 Cordes M, Giese B (2009) Electron transfer in peptides and proteins. Chem Soc Rev 38(4):892–901. https://doi.org/10.1039/b805743p Costa-Latgé SGD, Bates P, Dillon RJ, Genta FA (2021) Characterization of glycoside hydrolase families 13 and 31 reveals expansion and diversification of α-amylase genes in the phlebotomine Lutzomyia longipalpis and modulation of sandfly glycosidase activities by Leishmania infection. Front Physiol 12:341. https://doi.org/10.3389/fphys.2021.635633 Del Moral S, Barradas-Dermitz DM, Aguilar-Uscanga MG (2018) Production and biochemical characterization of α-glucosidase from Aspergillus niger ITV-01 isolated from sugar cane bagasse. 3 Biotech 8(1):1–9. https://doi.org/10.1007/s13205-017-1029-6 DiNicolantonio JJ, Bhutani J, O’Keefe JH (2015) Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart 2(1):e000327. https://doi.org/10.1136/openhrt-2015-000327 Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, Kosiborod M (2022) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care 45(1):S17–S38. https://doi.org/10.2337/dc22-s002 Dušan V, Nenad M, Dejan B, Filip B, Segal AM, Dejan Š, Aleksandra D (2014) The specificity of α-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation. Appl Microbiol Biotechnol 98(14):6317–6328. https://doi.org/10.1007/s00253-014-5587-9 Eberle C, Stichling S (2021) Impact of COVID-19 lockdown on glycemic control in patients with type 1 and type 2 diabetes mellitus: a systematic review. Diabetol Metab Syndr 13(1):1–8. https://doi.org/10.1186/s13098-021-00705-9 Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421. https://doi.org/10.3390/molecules200713384 Feynman RP, Leighton RB, Sands M (1965) The feynman lectures on physics; vol i. Amer J Phys 33(9):750–752. https://doi.org/10.1119/1.1972241 Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Eh M, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36(22):3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2 Gregory JM, Slaughter JC, Duffus SH, Smith TJ, LeStourgeon LM, Jaser SS, Moore DJ (2021) COVID-19 severity is tripled in the diabetes community: a prospective analysis of the pandemic’s impact in type 1 and type 2 diabetes. Diabetes Care 44(2):526–532. https://doi.org/10.2337/dc20-2260 Gulcin İ (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94(3):651–715. https://doi.org/10.1007/s00204-020-02689-3 Gulcin I, Bingöl Z, Taslimi P, Gören AC, Alwasel SH, Tel AZ (2022) Polyphenol contents potential antioxidant anticholinergic and antidiabetic properties of mountain mint (Cyclotrichium leucotrichum). Chem Biodivers. https://doi.org/10.1002/cbdv.202100775 Guo N, Li C, Liu Q, Liu S, Huan Y, Wang X, Shen Z (2018) Maltol, a food flavor enhancer, attenuates diabetic peripheral neuropathy in streptozotocin-induced diabetic rats. Food Funct 9(12):6287–6297. https://doi.org/10.1039/C8FO01964A Henning RJ (2018) Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol 14(6):491–509. https://doi.org/10.2217/fca-2018-0045 Hoang HTN, Dinh TTT, Pham TV, Le HBT, Ho DV (2020) Chemical composition and acetylcholinesterase inhibitory activity of essential oil from rhizomes of Distichochlamys benenica. Hue Univ J Sci Nat Sci 129(1D):43–49 Hossain TJ, Harada Y, Hirayama H, Tomotake H, Seko A, Suzuki T (2016) Structural analysis of free N-glycans in α-glucosidase mutants of Saccharomyces cerevisiae: lack of the evidence for the occurrence of catabolic α-glucosidase acting on the N-glycans. PLoS ONE 11(3):e0151891. https://doi.org/10.1371/journal.pone.0151891 Medical Publishing House (2017) Vietnamese Pharmacopoeia V, Hanoi Huong LT, Chau DT, Hung NV, Dai DN, Ogunwande IA (2017) Volatile constituents of Distichochlamys citrea MF Newman and Distichochlamys orlowii K Larsen MF Newman (Zingiberaceae) from Vietnam. J Med Plants Res 11(9):188–193. https://doi.org/10.5897/JMPR2016.6337 Ito F, Sono Y, Ito T (2019) Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants 8(3):72. https://doi.org/10.3390/antiox8030072 Kang KS, Yamabe N, Kim HY, Yokozawa T (2008) Role of maltol in advanced glycation end products and free radicals: in-vitro and in-vivo studies. J Pharm Pharmacol 60(4):445–452. https://doi.org/10.1211/jpp.60.4.0006 Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem BioL Interact 171(2):165–176. https://doi.org/10.1016/j.cbi.2006.12.006 Kharkyanen VN, Petrov EG, Ukrainskii II (1978) Donor-acceptor model of electron transfer through proteins. J Theor Biol 73(1):29–50. https://doi.org/10.1016/0022-5193(78)90178-9 Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1(1–6):104–113. https://doi.org/10.1016/S0031-8914(34)90011-2 Kowalski S, Lukasiewicz M, Duda-Chodak A, Ziec G (2013) 5-Hydroxymethyl-2-furfural (HMF)–heat-induced formation, occurrence in food and biotransformation-a review. Polish J Food Nutr Sci 63(4):207–225. https://doi.org/10.2478/v10222-012-0082-4 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25. https://doi.org/10.1016/S0169-409X(96)00423-1 Loan HTP, Bui TQ, My TTA, Hai NTT, Quang DT, Tat PV, Nhung NTA (2020) In-depth investigation of a donor-acceptor interaction on the heavy-group-14@ group-13-diyls in transition-metal tetrylone complexes: structure, bonding, and property. ACS Omega 5(33):21271–21287. https://doi.org/10.1021/acsomega.0c03237 Marković ZS, Dimitrić Marković JM, Milenković D, Filipović N (2011) Mechanistic study of the structure–activity relationship for the free radical scavenging activity of baicalein. J Mol Model 17(10):2575–2584. https://doi.org/10.1007/s00894-010-0942-y Mazumder J, Chakraborty R, Sen S, Vadra S, De B, Ravi TK (2009) Synthesis and biological evaluation of some novel quinoxalinyl triazole derivatives. Der Pharma Chem 1:188–198 Moradi-Marjaneh R, Paseban M, Sahebkar A (2019) Natural products with SGLT2 inhibitory activity: possibilities of application for the treatment of diabetes. Phyther Res 33(10):2518–2530. https://doi.org/10.1002/ptr.6421 Mošovská S, Nováková D, Kaliňák M (2015) Antioxidant activity of ginger extract and identification of its active components. Acta Chimica Slovaca 8(2):115–119. https://doi.org/10.1515/acs-2015-0020 Moteki H, Hibasami H, Yamada Y, Katsuzaki H, Imai K, Komiya TAKASHI (2002) Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line. Oncol Rep 9(4):757–760. https://doi.org/10.3892/or.9.4.757 Newman MF (1995) Distichochlamys, a new genus from Vietnam. Edinburgh J Bot 52(1):65–69. https://doi.org/10.1017/S096042860000192X Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt Jr PIH (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473(24):4527–4550. https://doi.org/10.1042/BCJ20160503C Ngo TD, Tran TD, Le MT, Thai KM (2016) Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds. Mol Divers 20(4):945–961. https://doi.org/10.1007/s11030-016-9688-5 Oguntibeju OO (2019) Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 11(3), 45. PMID: 31333808; PMCID: PMC6628012 Pham TV, Hoang HNT, Nguyen HT, Nguyen HM, Huynh CT, Vu TY, Do BH (2021) Anti-inflammatory and antimicrobial activities of compounds isolated from Distichochlamys benenica. Biomed Res Int. https://doi.org/10.1155/2021/6624347 Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104 Quintans-Júnior LJ, Guimarães AG, Santana MTD, Araújo BE, Moreira FV, Bonjardim LR, Santos MR (2011) Citral reduces nociceptive and inflammatory response in rodents. Rev Bras Farmacogn 21(3):497–502. https://doi.org/10.1590/S0102-695X2011005000065 Rad AS, Ardjmand M, Esfahani MR, Khodashenas B (2021) DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. Spectrochim Acta Part A Mol Biomol Spectrosc 247:119082. https://doi.org/10.1016/j.saa.2020.119082 Radi R, Denicola A, Morgan B, Zielonka J (2018) Foreword to the free radical biology and medicine special issue on¨ Current fluorescence and chemiluminescence approaches in free radical and redox biology¨.Free Radic Biol Med 128, 1–2. https://doi.org/10.1016/j.freeradbiomed.2018.09.027 Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735–746. https://doi.org/10.1063/1.449486 Rehder D (2020) The potentiality of vanadium in medicinal applications. Inorganica Chim Acta 504:119445. https://doi.org/10.1016/j.ica.2020.119445 Reid TS (2013) Practical use of glucagon-like peptide-1 receptor agonist therapy in primary care. Clin Diabetes 31(4):148–157. https://doi.org/10.2337/diaclin.31.4.148 Rosenberg B (1962) Electrical conductivity of proteins. Nature 193(4813):364–365. https://doi.org/10.1038/193364a0 Sagaama A, Noureddine O, Brandán SA, Jarczyk-Jędryka A, Flakus HT, Ghalla H, Issaoui N (2020) Molecular docking studies, structural and spectroscopic properties of monomeric and dimeric species of benzofuran-carboxylic acids derivatives: DFT calculations and biological activities. Comput Biol Chem 87:107311. https://doi.org/10.1016/j.compbiolchem.2020.107311 Sandholm N, Forsblom C (2020) Genetics of diabetic microvascular disease. Microvasc Dis Diabetes. https://doi.org/10.1002/9781119309642.ch3 Sha JY, Zhou YD, Yang JY, Leng J, Li JH, Hu JN, Li W (2019) Maltol (3-hydroxy-2-methyl-4-pyrone) slows D-galactose-induced brain aging process by damping the Nrf2/HO-1-mediated oxidative stress in mice. J Agric Food Chem 67(37):10342–10351. https://doi.org/10.1021/acs.jafc.9b04614 Shobana S, Vidhya VG, Ramya M (2009) Antibacterial activity of garlic varieties (ophioscordon and sativum) on enteric pathogens. Curr Res J Biol Sci 1(3):123–126 Song Y, Hong S, Iizuka Y, Kim CY, Seong GJ (2015) The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells. Korean J Ophthalmol 29(1):58–65. https://doi.org/10.3341/kjo.2015.29.1.58 Sun F, Chai S, Yu K, Quan X, Yang Z, Wu S, Shi L (2015) Gastrointestinal adverse events of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Technol Ther 17(1):35–42. https://doi.org/10.1089/dia.2014.0188 Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Magliano DJ (2022) IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119 Suresh BV (2010) Solid state devices and technology. Pearson Education, India Tarasova O, Poroikov V, Veselovsky A (2018) Molecular docking studies of HIV-1 resistance to reverse transcriptase inhibitors: mini-review. Molecules 23(5):1233. https://doi.org/10.3390/molecules23051233 Thai KM, Le DP, Tran TD, Le MT (2015) Computational assay of Zanamivir binding affinity with original and mutant influenza neuraminidase 9 using molecular docking. J Theor Biol 385:31–39. https://doi.org/10.1016/j.jtbi.2015.08.019 Thao TTP, Bui TQ, Hai NTT, Huynh LK, Quy PT, Bao NC, Nhung NTA (2021a) Newly synthesised oxime and lactone derivatives from Dipterocarpus alatus dipterocarpol as anti-diabetic inhibitors: experimental bioassay-based evidence and theoretical computation-based prediction. RSC Adv 11(57):35765–35782. https://doi.org/10.1039/d1ra04461c Thao TTP, Bui TQ, Quy PT, Bao NC, Van Loc T, Van Chien T, Nhung NTA (2021b) Isolation, semi-synthesis, docking-based prediction, and bioassay-based activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Adv 11(20):11959–11975. https://doi.org/10.1039/D1RA00441G Tomasik P, Horton D (2012) Enzymatic conversions of starch. Adv Carbohyd Chem Biochem 68:59–436. https://doi.org/10.1016/B978-0-12-396523-3.00001-4 Tripathi UN, Chandra D (2009) The plant extracts of Momordica charantia and Trigonella foenum graecum have antioxidant and anti-hyperglycemic properties for cardiac tissue during diabetes mellitus. Oxid Med Cell Longev 2(5):290–296. https://doi.org/10.4161/oxim.2.5.9529 Ty PV, Hoai NT, Khan NV, Duc HV (2017) Chemical composition of the essential oils of Distichochlamys cetria leaves collected from central Vietnam. Vietnam J Chem 55(4E23):358–362 Vinothiya K, Ashokkumar N (2017) Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomed Pharmacother 87:640–652. https://doi.org/10.1016/j.biopha.2016.12.134 Wang Q, Wang J, Li N, Liu J, Zhou J, Zhuang P, Chen H (2022) A systematic review of orthosiphon stamineus benth in the treatment of diabetes and its complications. Molecules 27(2):444. https://doi.org/10.3390/molecules27020444 Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305. https://doi.org/10.1039/b508541a Wu Y, Ding Y, Tanaka Y, Zhang W (2014) Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci 11(11):1185. https://doi.org/10.7150/ijms.10001 Xiao J (2022) Recent advances in dietary flavonoids for management of type 2 diabetes. Curr Opin Food Sci. https://doi.org/10.1016/j.cofs.2022.01.002 Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A (2020) Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. https://doi.org/10.1155/2020/8609213 Zhao L, Chen J, Su J, Li L, Hu S, Li B, Chen T (2013) In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J Agric Food Chem 61(44):10604–10611. https://doi.org/10.1021/jf403098y