Antimicrobial resistance in community and nosocomial Escherichia coli urinary tract isolates, London 2005 – 2006

David C. Bean1, D. Krahé2, David W. Wareham2,1,3
1Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, UK
2Department of Medical Microbiology, Homerton University Foundation NHS trust, London, UK
3Division of Infection, Barts and The London NHS Trust, London, UK

Tóm tắt

Abstract Background

Escherichia coli is the commonest cause of community and nosocomial urinary tract infection (UTI). Antibiotic treatment is usually empirical relying on susceptibility data from local surveillance studies. We therefore set out to determine levels of resistance to 8 commonly used antimicrobial agents amongst all urinary isolates obtained over a 12 month period.

Methods

Antimicrobial susceptibility to ampicillin, amoxicillin/clavulanate, cefalexin, ciprofloxacin, gentamicin, nitrofurantoin, trimethoprim and cefpodoxime was determined for 11,865 E. coli urinary isolates obtained from community and hospitalised patients in East London.

Results

Nitrofurantoin was the most active agent (94% susceptible), followed by gentamicin and cefpodoxime. High rates of resistance to ampicillin (55%) and trimethoprim (40%), often in combination were observed in both sets of isolates. Although isolates exhibiting resistance to multiple drug classes were rare, resistance to cefpodoxime, indicative of Extended spectrum β-lactamase production, was observed in 5.7% of community and 21.6% of nosocomial isolates.

Conclusion

With the exception of nitrofurantoin, resistance to agents commonly used as empirical oral treatments for UTI was extremely high. Levels of resistance to trimethoprim and ampicillin render them unsuitable for empirical use. Continued surveillance and investigation of other oral agents for treatment of UTI in the community is required.

Từ khóa


Tài liệu tham khảo

Baerheim A: Empirical treatment of uncomplicated cystitis. BMJ. 2001, 323: 1197-1198. 10.1136/bmj.323.7323.1197

Gupta K, Hooton TM, Stamm WE: Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann Intern Med. 2001, 135: 41-50.

Farrell DJ, Morrissey I, De Rubeis D, Robbins M, Felmingham D: A UK multicentre study of the antimicrobial susceptibility of bacterial pathogens causing urinary tract infection. J Infect. 2003, 46: 94-100. 10.1053/jinf.2002.1091

Bean DC, Livermore DM, Papa I, Hall LM: Resistance among Escherichia coli to sulphonamides and other antimicrobials now little used in man. J Antimicrob Chemother. 2005, 56: 962-964. 10.1093/jac/dki332

Potz NA, Hope R, Warner M, Johnson AP, Livermore DM, : Prevalence and mechanisms of cephalosporin resistance in Enterobacteriaciae in London and South East England. J Antimicrob Chemother. 2006, 58: 320-326. 10.1093/jac/dkl217

Lipsky BA: Urinary tract infections in men. Epidemiology, pathophysiology, diagnosis, and treatment. 1989, 110: 138-150.

Shannon KP, French GL: Increasing resistance to antimicrobial agents of Gram-negative organisms isolated at a London teaching hospital, 1995 – 2000. J Antimicrob Chemother. 2004, 53: 818-825. 10.1093/jac/dkh135

Hope R, Potz NA, Warner M, Fagan EJ, Arnold E, Livermore DM: Efficacy of practised screening methods for detection of cephalosporin-resistant Enterobacteriaceae. J Antimicrob Chemother. 2007, 59: 110-113. 10.1093/jac/dkl431

Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, Coque TM, Kern-Zadanowicz I, Luzzaro F, Poirel L, Woodford N: CTX-M: Changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007, 59: 165-174. 10.1093/jac/dkl483

Karisk E, Ellington MJ, LIvermore DM, Woodford N: Virulence factors in Escherichia coli with CTX-M-15 and other extended spectrum β-lactamases in the UK. J Antimicrob Chemother. 2008, 61: 54-58. 10.1093/jac/dkm401

Matsumoto T, Muratani T: Newer carbapenems for urinary tract infections. Int J Antimicrob Agents. 2004, 24 (Suppl 1): 35-38. 10.1016/j.ijantimicag.2004.03.001.

Alos JI, Serrano MG, Gomez-Garces JL, Perianes J: Antibiotic resistance of Escherichia coli from community acquired urinary tract infections in relation to demographic and clinical data. Clin Microbiol Infect. 2005, 11: 199-203. 10.1111/j.1469-0691.2004.01057.x

Hames L, Rice CE: Antimicrobial Resistance of Urinary Tract Isolates in acute uncomplicated cystitis among college aged women: Choosing a first line therapy. J Am Coll Health. 2007, 56: 153-156. 10.3200/JACH.56.2.153-158

Pullukcu H, Tasbakan M, Sipahi OR, Yamazhan T, Aydemir S, Ulusoy S: Fosfomycin in the treatment of extended spectrum β-lactamase producing Escherichia coli related lower urinary tract infection. Int J Antimicrob Agents. 2007, 29: 62-5. 10.1016/j.ijantimicag.2006.08.039

Livermore DM, Hope R, Mushtaq S, Warner M: Orthodox and unorthodox clavulanate combinations against extended spectrum β-lactamase producers. Clin Microbiol Infect. 2008, 14 (Suppl 1): 189-193. 10.1111/j.1469-0691.2007.01858.x