Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các hoạt động kháng khuẩn, chống oxy hóa và độc tính của tinh chất lá và thân cây Carissa bispinosa được sử dụng cho chăm sóc sức khỏe răng miệng
Tóm tắt
Carissa bispinosa (L.) Desf. ex Brenan là một trong những cây thuốc được sử dụng truyền thống để điều trị các nhiễm trùng miệng. Tuy nhiên, dữ liệu hiện có về các đặc tính trị liệu và hóa học quang của nó còn hạn chế. Mục tiêu của nghiên cứu này là điều tra hiệu quả bảo vệ của các chiết xuất từ lá và thân cây C. bispinosa chống lại các nhiễm trùng miệng. Hàm lượng phenolic và tannin được đo bằng phương pháp Folin-Ciocalteau sau khi chiết xuất với các dung môi khác nhau. Nồng độ ức chế tối thiểu (MIC) của các chiết xuất được đánh giá bằng phương pháp phân định vi đối với các chủng nấm (Candida albicans và Candida glabrata) và vi khuẩn (Streptococcus pyogenes, Staphylococcus aureus và Enterococcus faecalis). Các mô hình 2-diphenyl-1-picrylhydrazyl (DPPH) và khả năng giảm sắt (FRP) được sử dụng để đánh giá tiềm năng chống oxy hóa của các chiết xuất. Độc tính của chiết xuất acetone từ lá được đánh giá bằng phương pháp thử nghiệm methylthiazol tetrazolium. Chiết xuất lá methanol có hàm lượng phenolic cao nhất (113,20 mg TAE/g), trong khi chiết xuất hexane thể hiện thành phần tannin cao nhất 22,98 mg GAE/g. Chiết xuất acetone từ thân cây có hàm lượng phenolic cao nhất (338 mg TAE/g) và chiết xuất từ thân cây cho tổng hàm lượng tannin cao nhất (49,87 mg GAE/g). Chiết xuất lá methanol thể hiện giá trị MIC thấp nhất (0,31 mg/mL), trong khi chiết xuất ethanol từ thân cây có giá trị MIC thấp nhất là 0,31 mg/mL. Chiết xuất methanol từ thân cây có hoạt tính loại bỏ gốc tự do DPPH tốt nhất (IC50, 72 µg/mL) trong khi chiết xuất ethanol từ thân cây thể hiện khả năng FRP cao nhất với độ hấp thụ là 1,916. Chiết xuất acetone từ lá có độc tính tối thiểu với nồng độ gây chết (LC50) là 0,63 mg/mL. Các kết quả thu được trong nghiên cứu này xác nhận hiệu ứng bảo vệ của C. bispinosa chống lại các nhiễm trùng miệng.
Từ khóa
#Carissa bispinosa #hoạt động kháng khuẩn #hoạt động chống oxy hóa #độc tính #chiết xuất lá #chiết xuất thânTài liệu tham khảo
Melo BADC, Vilar LG, Oliveira NRD, Lima POD, Pinheiro MDB, Domingueti CP, Pereira MC. Human papillomavirus Infection and oral squamous cell carcinoma-a systematic review. Braz J Otorhinolaryngol. 2021;87:346–52.
Džunková M, Martinez-Martinez D, Gardlík R, Behuliak M, Janšáková K, Jiménez N, Vázquez-Castellanos JF, Martí JM, D’Auria G, Bandara HMHN, Latorre A. Oxidative stress in the oral cavity is driven by individual-specific bacterial communities. NPJ Biofilms Microbio. 2018;4(1):1–10.
Milho C, Silva J, Guimarães R, Ferreira IC, Barros L, Alves MJ. Antimicrobials from medicinal plants: an emergent strategy to control oral biofilms. Appl Sci. 2021;11(9):4020.
Deo PN, Deshmukh R. Oral microbiome: unveiling the fundamentals. J Oral Maxillofac Pathol. 2019;23(1):122.
Besra M, Kumar V. In vitro investigation of antimicrobial activities of ethnomedicinal plants against dental caries pathogens. 3 Biotech. 2018;8(5):1–8.
dos Santos Letieri A, Siqueira WL, Solon-de-Mello M, Masterson D, Freitas-Fernandes LB, Valente AP, de Souza IPR, da Silva Fidalgo TK, Maia LC. A critical review on the association of hyposalivation and dental caries in children and adolescents. Arch Oral Biol. 2022;144:105545.
Sczepanik FSC, Grossi ML, Casati M, Goldberg M, Glogauer M, Fine N, Tenenbaum HC. Periodontitis is an inflammatory Disease of oxidative stress: we should treat it that way. Periodontology. 2000;84(1):45–68.
Picciolo G, Mannino F, Irrera N, Minutoli L, Altavilla D, Vaccaro M, Oteri G, Squadrito F, Pallio G. Reduction of oxidative stress blunts the NLRP3 inflammatory cascade in LPS stimulated human gingival fibroblasts and oral mucosal epithelial cells. Biomed Pharmacother. 2022;146:112525.
Sardaro N, Della Vella F, Incalza MA, Di Stasio D, Lucchese A, Contaldo M, Laudadio C, Petruzzi M. Oxidative stress and oral mucosal Diseases: an overview. In vivo. 2019;33(2):289–96.
Ishii K, Hamamoto H, Imamura K, Adachi T, Shoji M, Nakayama K, Sekimizu K. 2010. Porphyromonas gingivalis peptidoglycans induce excessive activation of the innate immune system in silkworm larvae. J Biol Chem. 2010; 285(43): 33338–47.
González-Palma I, Escalona-Buendía HB, Ponce-Alquicira E, Téllez-Téllez M, Gupta VK, Díaz-Godínez G, Soriano-Santos J. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front Microbiol. 2016;7:1099.
Galvão LC, Furletti VF, Bersan SM, da Cunha MG, Ruiz AL, Carvalho JE, Sartoratto A, Rehder VL, Figueira GM, Teixeira Duarte MC, et al. Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects. Evid-Based Complement Altern Med. 2012;2012:751435.
Hassan M, Shafique F, Bhutta H, Haq K, Almansouri T, Asim N, Khan D, Butt S, Ali N, Akbar N. A comparative study to evaluate the effects of antibiotics, plant extracts and fluoride-based toothpaste on the oral pathogens isolated from patients with gum Diseases in Pakistan. Braz J Biol. 2021;83:e242703.
Jain I, Jain P, Bisht D, Sharma A, Srivastava B, Gupta N. Use of traditional Indian plants in the inhibition of caries-causing bacteria-Streptococcus mutans. Braz Dent J. 2015;26:110–15.
Kanth MR, Prakash AR, Sreenath G, Reddy VS, Huldah S. Efficacy of specific plant products on microorganisms causing dental caries. J Clin Diagnostic Res. 2016;10(12):ZM01.
Kathiravan MK, Salake AB, Chothe AS, Dude PB, Watode RP, Mukta MS, Gadwe S. The biology and chemistry of antifungal agents: a review. Bioorg Med Chem. 2012;20:5678–98.
Salehi B, Jornet PL, López EPF, Calina D, Sharifi-Rad M, Ramírez-Alarcón K, Forman K, Fernández M, Martorell M, Setzer WN, Martins N. Plant-derived bioactives in oral mucosal lesions: a key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties. Biomolecules. 2019;9(3):106.
Tsilo PH, Maliehe ST, Shandu JS, Khan R. Chemical composition and some biological activities of the methanolic Encephalartos ferox fruit extract. Pharmacogn J. 2020;12(5):1190–97.
Dhatwalia J, Kumari A, Verma R, Upadhyay N, Guleria I, Lal S, Thakur S, Gudeta K, Kumar V, Chao JCJ, Sharma S. Phytochemistry, pharmacology, and nutraceutical profile of Carissa species: an updated review. Molecules. 2021;26(22):7010.
Muleya E, Ahmed AS, Sipamla AM, Mtunzi FM. Free radical scavenging and antibacterial activity of crude extracts from selected plants of medicinal value used in Zululand. Pak J Nutr. 2014;13(1):38.
Kaunda JS, Zhang YJ. The genus Carissa: an ethnopharmacological, phytochemical and pharmacological review. Nat Prod Bioprospect. 2017;7(2):18–99.
Takaba K, Hirose M, Yoshida Y, Kimura J, Ito N, Shirai T. Effects of n-tritriacontane-16, 18-dione, curcumin, chlorophyllin, dihydroguaiaretic acid, tannic acid and phytic acid on the initiation stage in a rat multi-organ carcinogenesis model. Cancer Lett. 1997;113(1–2):39–46.
Mlala S, Oyedeji AO, Gondwe M, Oyedeji OO. Ursolic acid and its derivatives as bioactive agents. Molecules. 2019;24(15):2751.
Gwatidzo L, Dzomba P, Mangena M. TLC separation and antioxidant activity of flavonoids from Carissa Bispinosa, Ficus sycomorus, and Grewia bicolar fruits. Nutrire. 2018;43(1):1–7.
World Health Organization. WHO guidelines on good agricultural and collection practices [GACP] for medicinal plants. World Health Organization, 2003.
Tambe VD, Bhambar RS. Estimation of total phenol, tannin, alkaloid, and flavonoid in Hibiscus tiliaceus Linn. Wood extracts: Research and Reviews. J Pharmacogn Phytochem. 2014;2:41–7.
Mpai S, Mokganya LM, Raphoko L, Masoko P, Ndhlala AR. Untargeted metabolites and chemometric approach to elucidate the response of growth and yield attributes on different concentrations of an amino acid based biostimulant in two lettuce cultivars. Sci Hortic. 2022;306:111478.
Begue WJ, Kline RM. The use of tetrazolium salts in bioautographic procedures. J Chromatogr A. 1972;64:182–84.
Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D, CLSI Subcommittee for Antifungal Susceptibility Testing. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat. 2010;13(6):180–95.
Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998;64:711–13.
Brand-Williams W, Cuvelier ME, Berset CLWT. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol. 1995;28:25–30.
Oyaizu M. Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986;44:307–15.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.
Afriza D, Suriyah WH, Ichwan SJA. August. In silico analysis of molecular interactions between the anti-apoptotic proteinsurvivin and dentatin, nordentatin, and quercetin. J Phys Conf Ser. 2018; 1073(3): 032001.
Trott O, Olson AJ. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comp Chem. 2010;31:455–61.
Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM. 2, 4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus Sp. Int J Food Microbiol. 2015;211:44–50.
Elmi A, Spina R, Risler A, Philippot S, Mérito A, Duval RE. Abdoul-Latif FM, aurain-Mattar D. evaluation of antioxidant and antibacterial activities, cytotoxicity of Acacia seyal Del Bark extracts and isolated compounds. Molecules. 2020;25:2392.
Farha AK, Hatha AM. Bioprospecting potential and secondary Metabolite Profile of a Novel sediment-derived Fungus Penicillium sp. Arcspf from Continental Slope of Eastern Arabian Sea. Mycology. 2019;10(2):109–17.
Mueller L, Boehm V. Antioxidant sctivity of β-carotene compounds in different in vitro sssays. Molecules. 2011;16:1055–69.
Masoko P, Eloff JN. Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant activities. Afr J Tradit Complement Altern Med. 2007;4:231–39.
Bouhafsoun A, Boga M, Boukeloua A, Temel H, Kaid-Harche M. Determination of anticholinesterase and antioxidant activities of methanol and water extracts of leaves and fruits of Chamaerops humilis L. J Appl Nat Sci. 2019;11:144–48.
Moure A, Cruz JM, Franco D, Domı́nguez JM, Sineiro J, Domı́nguez H, Núñez MJ, Parajó JC. Natural antioxidants from residual sources. Food Chem. 2001;72:145–71.
Tlili N, Elfalleh W, Hannachi H, Yahia Y, Khaldi A, Ferchichi A, Nasri N. Screening of natural antioxidants from selected medicinal plants. Int J Food Prop. 2013;16:1117–26.
Tohma H, Gülçin İ, Bursal E, Gören AC, Alwasel SH, Köksal E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) Determined by HPLC-MS/MS. J Food Meas Charact. 2017;11:556–66.
Granato D, Shahidi F, Wrolstad R, Kilmartin P, Melton LD, Hidalgo FJ, Miyashitag K, Camph JV, Alasalvari C, Ismailj AB, Elmorek S, Birchk GG, Charalampopoulosk D, Astleyl SB, Peggm R, Zhoun P, Finglas P. Antioxidant activity, total phenolics and flavonoids contents: should we ban in vitro screening methods? Food Chem. 2018;264:471–75.
Rahman MJ, Ambigaipalan P, Shahidi F. Biological activities of Camelina and Sophia seeds phenolics: inhibition of LDL oxidation, DNA damage, and pancreatic lipase and α-glucosidase activities. J Food Sci. 2018;83:237–45.
Gkotsis G, Nika MC, Athanasopoulou AI, Vasilatos K, Alygizakis N, Boschert M, Osterauer R, Höpker KA, Thomaidis NS. Advanced throughput analytical strategies for the comprehensive HRMS screening of organic micropollutants in eggs of different bird species. Chemosphere. 2023;312:137092.
Yadav R, Rai R, Yadav A, Pahuja M, Solanki S, Yadav H. Evaluation of antibacterial activity of Achyranthes aspera extract against Streptococcus mutans: an in vitro study. J Adv Pharm Technol Res. 2016;7:149–52.
Uche-Okereafor N, Sebola T, Tapfuma K, Mekuto L, Green E, Mavumengwana V. Antibacterial activities of crude secondary metabolite extracts from Pantoea species obtained from the stem of Solanum mauritianum and their effects on two Cancer cell lines. Int J Environ Res Public Health. 2019;16(4):602.
Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. Afr J Biotechnol. 2008;7:3188–92.
Ngidi LS, Nxumalo CI, Shandu JS, Maliehe TS, Rene K. Antioxidant, anti-quorum sensing and cytotoxic properties of the endophytic Pseudomonas aeruginosa CP043328. 1’s extract. Pharmacog J. 2021;13(2):332–40.
López-García J, Lehocký M, Humpolíček P, Sáha P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater. 2014;5:43–57.
Jena AK, Karan M, Vasisht K. Plant parts substitution-based approach as a viable conservation strategy for medicinal plants: a case study of Premnalatifolia Roxb. J Ayurveda Integr Med. 2017;8:68–72.
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935–49.
Weber SG, Gold HS, Hooper DC, Karchmer AW, Carmeli Y. Fluoroquinolones and the risk for methicillin-resistant Staphylococcus aureus in hospitalized patients. Emerg Infect Dis. 2003;9(11):1415–22.
Ye Z, Lu Y, Wu T. The impact of ATP-binding cassette transporters on metabolic Diseases. Nutr Metab. 2020;17(1):1–14.
Maliehe TS, Selepe TN, Mthembu NN, Shandu JS. Antibacterial and anti-quorum sensing activities of Erianthemum dregeis Leaf Extract and Molecular Docking. Pharmacogn J. 2023;15(2):279–85.
Chakraborty C, Mallick B, Sharma AR, Sharma G, Jagga S, Doss CGP, Nam JS, Lee SS. Micro-environmental signature of the interactions between druggable target protein, dipeptidyl peptidase-IV, and anti-diabetic Drugs. Cell J. 2017;19(1):65.
Amer HH, Eldrehmy EH, Abdel-Hafez SM, Alghamdi YS, Hassan MY, Alotaibi SH. Antibacterial and molecular docking studies of newly synthesized nucleosides and Schiff bases derived from sulfadimidines. Sci Rep. 2021;11(1):17953.
Oyedele AQK, Ogunlana AT, Boyenle ID, Adeyemi AO, Rita TO, Adelusi TI, Abdul-Hammed M, Elegbeleye OE, Odunitan TT. Docking covalent targets for drug discovery: stimulating the computer-aided drug design community of possible pitfalls and erroneous practices. Mol Divers. 2022:1–25.
