Antibody response to 13-valent pneumococcal conjugate vaccine is not impaired in patients with rheumatoid arthritis or primary Sjögren’s syndrome without disease modifying treatment
Tóm tắt
Pneumococcal vaccination is recommended to patients with rheumatoid arthritis (RA) and primary Sjögren’s syndrome (pSS). However, little is known whether the diseases influence pneumococcal vaccine response. This study aimed to investigate antibody response and functionality of antibodies following immunization with 13-valent pneumococcal conjugate vaccine (PCV13) in RA patients or pSS patients without disease modifying anti-rheumatic drugs (DMARD), compared to patients with RA treated with DMARD or to healthy controls. Sixty RA patients (50 without DMARD and 10 with MTX), 15 patients with pSS and 49 controls received one dose of PCV13. Serotype-specific antibody concentrations for pneumococcal polysaccharides 6B and 23F and functionality of antibodies (23F) were determined in serum taken before and 4–6 weeks after vaccination using ELISA and opsonophagocytic activity assay (OPA), respectively. Proportions of individuals with positive antibody response (i.e. ≥ 2-fold increase from prevaccination concentrations; antibody response ratio; ARR ≥ 2), percentage of individuals reaching putative protective antibody level (i.e. ≥1.3 μg/mL) for both serotypes, and difference in OPA were calculated. After vaccination, antibody concentrations for both serotypes increased in RA without DMARD (p < 0.001), pSS (p ≤ 0.05 and < 0.01) and controls (p < 0.001). Antibody responses to 6B and 23F were comparable in RA without DMARD (64% and 74%), pSS (67% and 53%) and controls (65% and 67%), but lower in the small group RA with MTX (both 20%, p < 0.01). Similarly, significant increases of patients reaching protective antibody levels were seen in RA without DMARD (p ≤ 0.001) and controls (p < 0.001). After vaccination, OPA increased significantly in controls, RA and pSS without DMARD (p < 0.001 to 0.03), but not in RA with MTX. Pneumococcal conjugate vaccine is immunogenic in RA and pSS patients without DMARD and in line with previous studies we support the recommendation that vaccination of RA patients should be performed before the initiation of MTX. ClinicalTrials.gov Identifier:
NCT02240888
. Retrospectively registered 4 September, 2014.
Tài liệu tham khảo
Naz SM, Symmons DPM. Mortality in established rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2007;21:871–83.
Flament T, Bigot A, Chaigne B, Henique H, Diot E, Marchand-Adam S. Pulmonary manifestations of Sjögren’s syndrome. Eur Respir Rev. 2016;25:110–23.
Doran MF, Crowson CS, Pond GR, O’Fallon WM, Gabriel SE. Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum. 2002;46:2287–93.
Doran MF, Crowson CS, Pond GR, O’Fallon WM, Gabriel SE. Predictors of infection in rheumatoid arthritis. Arthritis Rheum. 2002;46:2294–300.
Singh JA, Cameron C, Noorbaloochi S, Cullis T, Tucker M, Christensen R, et al. Risk of serious infection in biological treatment of patients with rheumatoid arthritis: a systematic review and meta-analysis. Lancet. 2015;386:258–65.
Wotton CJ, Goldacre MJ. Risk of invasive pneumococcal disease in people admitted to hospital with selected immune-mediated diseases: record linkage cohort analyses. J Epidemiol Community Health. 2012;66:1177–81.
Kapetanovic MC, Saxne T, Sjöholm A, Truedsson L, Jönsson G, Geborek P. Influence of methotrexate, TNF blockers and prednisolone on antibody responses to pneumococcal polysaccharide vaccine in patients with rheumatoid arthritis. Rheumatology (Oxford). 2006;45:106–11.
Kapetanovic MC, Roseman C, Jönsson G, Truedsson L, Saxne T, Geborek P. Antibody response is reduced following vaccination with 7-valent conjugate pneumococcal vaccine in adult methotrexate-treated patients with established arthritis, but not those treated with tumor necrosis factor inhibitors. Arthritis Rheum. 2011;63:3723–32.
Centers for Disease Control and Prevention (CDC). Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine for adults with immunocompromising conditions: recommendations of the advisory committee on immunization practices (ACIP). MMWR Morb Mortal Wkly Rep. 2012;61:816–9.
Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European league against rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–81.
Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. 2016 American College of Rheumatology/European league against rheumatism classification criteria for primary Sjögren’s syndrome: a consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis. 2017;76:9–16.
Online GCP. Guideline for Good Clinical Practice. Available from: http://www.onlinegcp.org. Cited 28 Feb 2017.
World Health Organization. The WHO consensus pneumococcal IgG ELISA. Training manual for enzyme-linked immunosorbent assay for the quantitation of Streptococcus pneumonia serotype specific IgG (Pn PS ELISA): a guide to procedures for qualification of materials and analysis of assay performance. Available from: https://www.vaccine.uab.edu/uploads/mdocs/ELISAProtocol(007sp).pdf. Cited 9 May 2017.
Nived P, Nagel J, Saxne T, Geborek P, Jönsson G, Skattum L, et al. Immune response to pneumococcal conjugate vaccine in patients with systemic vasculitis receiving standard of care therapy. Vaccine. 2017;35:3639–46.
Martinez JE, Romero-Steiner S, Pilishvili T, Barnard S, Schinsky J, Goldblatt D, et al. A flow cytometric opsonophagocytic assay for measurement of functional antibodies elicited after vaccination with the 23-valent pneumococcal polysaccharide vaccine. Clin Diagn Lab Immunol. 1999;6:581–6.
Orange JS, Ballow M, Stiehm ER, Ballas ZK, Chinen J, De La Morena M, et al. Use and interpretation of diagnostic vaccination in primary immunodeficiency: a working group report of the basic and clinical immunology interest section of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2012;130:S1–24.
Hua C, Barnetche T, Combe B, Morel J. Effect of methotrexate, anti-tumor necrosis factor α, and rituximab on the immune response to influenza and pneumococcal vaccines in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2014;66:1016–26.
Chang Y-S, Liu C-J, Ou S-M, Hu Y-W, Chen T-J, Lee H-T, et al. Tuberculosis infection in primary Sjögren’s syndrome: a nationwide population-based study. Clin Rheumatol. 2014;33:377–83.
Nived P, Jørgensen CS, Settergren B. Vaccination status and immune response to 13-valent pneumococcal conjugate vaccine in asplenic individuals. Vaccine. 2015;33:1688–94.
European Medicines Agency. Prevenar 13: Summary of product characteristics. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001104/WC500057247.pdf. Cited 8 May 2017.
Romero-Steiner S, Frasch CE, Carlone G, Fleck RA, Goldblatt D, Nahm MH. Use of opsonophagocytosis for serological evaluation of pneumococcal vaccines. Clin Vaccine Immunol. 2006;13:165–9.
Brauner S, Folkersen L, Kvarnström M, Meisgen S, Petersen S, Franzén-Malmros M, et al. H1N1 vaccination in Sjögren’s syndrome triggers polyclonal B cell activation and promotes autoantibody production. Ann Rheum Dis. 2017;76(10):1755–63. doi:https://doi.org/10.1136/annrheumdis-2016-210509
