Antibody–nanobody combination increases their neutralizing activity against SARS-CoV-2 and nanobody H11-H4 is effective against Alpha, Kappa and Delta variants
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cohen, J. Antibodies may curb pandemic before vaccines. Science 369, 752–753 (2020).
Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol. 20, 269–270 (2020).
Chen, L. et al. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis. 20, 398–400 (2020).
Shen, C. et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 323, 1582–1589 (2020).
Tortorici, M. A. & Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res. 105, 93–116 (2019).
Simmons, G. et al. Proteolytic activation of the SARS-coronavirus Spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 100, 605–614 (2013).
Gallagher, T. M. & Buchmeier, M. J. Coronavirus Spike proteins in viral entry and pathogenesis. Virology 279, 371–374 (2001).
Belouzard, S. et al. Activation of the SARS coronavirus Spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. USA 106, 5871–5876 (2009).
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV Spike in the prefusion conformation. Science 367, 1260–1263 (2020).
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 Spike glycoprotein. Cell 180, 281–292 (2020).
Krempl, C. et al. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J. Virol. 71, 3285–3287 (1997).
Kunkel, F. & Herrler, G. Structural and functional analysis of the S proteins of two human coronavirus OC43 strains adapted to growth in different cells. Arch. Virol. 141, 1123–1131 (1996).
Lu, G. et al. Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 23, 468–478 (2015).
Zhou, H. et al. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV Spike glycoprotein. Nat. Commun. 10, 3068 (2019).
Tai, W. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 17, 613–620 (2020).
Lan, J. et al. Structure of the SARS-CoV-2 Spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).
Jiang, S. et al. Therapeutic antibodies and fusion inhibitors targeting the spike protein of SARS-CoV-2. Expert Opin. Ther. Targets. 25, 415–421 (2021).
Chen, J. et al. Review of Covid 19 antibody therapies. Annu. Rev. Biophys. 50, 1–30 (2021).
Lu, M. et al. Real-time conformational dynamics of SARS-CoV-2 Spikes on virus particles. Cel Host Microbe 28, P880-891.E8 (2020).
Tian, X. et al. Potent binding of 2019 novel coronavirus Spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect. 9, 382–385 (2020).
Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).
Jovčevska, I. & Muyldermans, S. The therapeutic potential of nanobodies. BioDrugs 34, 11–26 (2020).
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
Wrapp, D. et al. Structural basis for potent neutralization of Beta coronaviruses by single-domain camelid antibodies. Cell 181, 1436–1441 (2020).
Huo, J. et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat. Struct. Mol. Biol. 27, 846–854 (2020).
Nguyen, H. et al. Electrostatic interactions explain the higher binding affinity of the CR3022 antibody for SARS-CoV-2 than the 4A8 antibody. J. Phys. Chem. B. 125, 7368–7379 (2021).
Carolina, C. G. et al. On the interaction of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2. Virus Res. 285, 198021 (2020).
Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).
Karim, S. S. A. et al. New SARS-CoV-2 variants—Clinical, public, health, and vaccine implications. N. Engl. J. Med. 384, 1866–1868 (2021).
Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815–821 (2021).
Singh, J. et al. SARS-CoV-2 variants of concern are emerging in India. Nat. Med. 27, 1131–1133 (2021).
Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).
Kimura, I. et al. SARS-CoV-2 Lambda variant exhibits higher infectivity and immune resistance. Cell Rep. 38, 110218 (2022).
Laiton-Donato, K. et al. Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. Infect. Genet. Evol. 95, 105038 (2021).
Salvatore, M. et al. Resurgence of SARS-CoV-2 in India: Potential role of the B.1.617.2 (Delta) variant and delayed interventions. medRxiv (2021).
Bai, C. et al. Predicting mutational effects on receptor binding of the Spike protein of SARS-CoV-2 variants. J. Am. Chem. Soc. 143, 17646–17654 (2021).
Jangra, S. et al. SARS-CoV-2 skipe E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283–e284 (2021).
Cheng, M. H. et al. Impact of South African 501.V2 variant on SARS-Cov-2 spike infectivity and neutralization: A structure-based computational assessment. BioRxiv (2021).
Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021).
Tada, T. et al. SARS-CoV-2 Lambda variant remains susceptible to neutralization by mRNA vaccine-elicited antibodies and convalescent serum. BioRxiv (2021).
Xu, J. et al. Nanobodies from camelid mice and llamas neutrlize SARS-CoV-2 variants. Nature 595, 278–282 (2021).
Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 54, 5.6.1-5.6.37 (2016).
The PyMOL molecular graphics system, version 2.0 Schrödinger, LLC.
Robustelli, P. et al. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. USA 115, E4758–E4766 (2018).
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Bussi, G. et al. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Parrinello, M. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981).
Jorgensen, W. L. & Jenson, C. Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density. J. Comput. Chem. 19, 1179–1186 (1998).
Hess, B. et al. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).
Darden, T. et al. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993).
Hockney, R. W. et al. Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14, 148–158 (1974).
Nguyen, H. et al. Steered molecular dynamics for investigating the interactions between Insulin Receptor Tyrosine Kinase (IRK) and variants pf Protein Tyrosine Phosphatase 1B (PTP1B). Appl. Biochem. Biotechnol. 184, 401–413 (2018).
Nguyen, H. et al. Binding affinity of the L-742,001 inhibitor to the endonuclease domain of A/H1N1/PA influenza virus variants: Molecular simulation approaches. Chem. Phys. 500, 26–36 (2018).
Pham, T. et al. Investigation of binding affinity between potential antiviral agents and PB2 protein of influenza A: Non-equilibrium molecular dynamics simulation approach. Int. J. Med. Sci. 17, 2031–2039 (2020).
Nguyen, H. L. et al. Does SARS-CoV-2 bind to human ACE2 more strongly than does SARS-CoV?. J. Phys. Chem. B. 124, 7336–7347 (2020).
Binnig, G. & Quate, C. F. Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).
Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997).
Hummer, G. & Szabo, A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. USA 98, 3658–3661 (2001).
Park, S. et al. Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J. Chem. Phys. 119, 3559 (2003).
Truong, D. T. & Li, M. S. Probing the binding affinity by Jarzynski’s nonequilibrium binding free energy and rupture time. J. Phys. Chem. B 122, 4693–4699 (2018).
Arnarez, C. et al. Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J. Chem. Theory Comput. 11, 260–275 (2015).
Monticelli, L. et al. The MARTINI coarse-grained force field: Extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008).
Uusitalo, J. J. et al. Martini coarse-grained force field: Extension to RNA. Biophys. J. 113, 246–256 (2017).
Yesylevskyy, S. O. et al. Polarizable water model for coarse-grained Martini force field. PLoS Comput. Biol. 6, e1000810 (2010).
Berendsen, H. J. C. et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
Thomas, D. P. et al. Automated coarse-grained mapping algorithm for the Martini force field and benchmarks for membrane-water partitioning. J. Chem. Theory Comput. 17, 5777–5791 (2021).
Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).
Kumar, S. et al. The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The method. J. Comput. Chem. 13, 1011–1021 (1992).
Patel, J. S. & Ytreberg, F. M. Fast calculation of protein-protein binding free energies using umbrella sampling with a coarse-grained model. J. Chem. Theory Comput. 14, 991–997 (2018).
Wallace, A. C. et al. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).
Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).
Dudko, O. K. et al. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).
Vuong, V. Q. et al. A new method for navigating optimal direction for pulling ligand from binding pocket: Application to ranking binding affinity by steered molecular dynamics. J. Chem. Inf. Model. 55, 2731–2738 (2015).
Pham, H. A. et al. Dependence of work on the pulling speed in mechaical ligand unbinding. J. Phys. Chem. B. 125, 8325–8330 (2021).
Nguyen, H. et al. Cocktail of REGN antibodies binds more strongly to SARS-CoV-2 than its components, but the Omicron variant reduces its neutralizing ability. J. Phys. Chem. B. 126, 2812–2823 (2022).
Mai, B. K. et al. Top leads for swine influenza A/H1N1 virus revealed by steered molecular dynamics approach. J. Chem. Inf. Model. 50, 2236–2247 (2010).
Kästner, J. Umbrella sampling. WIREs Comput. Mol. Sci. 1, 932–942 (2011).