Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and Salmonella Typhimurium

Botanical Studies - Tập 56 Số 1 - 2015
Jayanta Kumar Patra1, Gitishree Das1, Kwang‐Hyun Baek1
1School of Biotechnology, Yeungnam University, Gyeongsan, 712-749, Gyeongbuk, Republic of Korea

Tóm tắt

Abstract Background Identification of natural antibacterial agents from various sources that can act effectively against disease causing foodborne bacteria is one of the major concerns throughout the world. However, the natural antibacterial agents identified to date are primarily effective against Gram positive bacteria, but less effective against Gram negative bacteria. In the present study, Enteromorpha linza L. essential oil (EEO) was evaluated for antibacterial activity against Escherichia coli and Salmonella Typhimurium along with the mode of their antibacterial action. Results The chemical composition of EEO revealed high amounts of acids (54.6 %) and alkenes (21.1 %). EEO was effective against both E. coli and S. Typhimurium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of EEO for both pathogens were 12.5 mg/ml and 25.0 mg/mL, respectively. EEO at the MIC acted on the loss in viability of E. coli ATCC 43890, which was used as the model system for evaluation of the antibacterial mode of action of EEO against Gram negative bacteria. Significant increase in relative electrical conductivity and K+ concentration were recorded with respect to time, indicating the disruption of tested E. coli cells owing to the controlling effect of EEO. Alternation of the morphology of the cell surface, increase in the release of 260 nm absorbing materials and loss of high salt tolerance were observed. Conclusions The results suggest that EEO induced a bactericidal effect via structural membrane damage caused by deposition of EEO in the cytosol or through enzymatic degradation of bacterial intracellular enzymes that resulted in cellular lysis. Accordingly, EEO can be used as a strong natural antibacterial agent against Gram negative foodborne pathogens such as E. coli and S. Typhimurium.

Từ khóa


Tài liệu tham khảo

Acharya D, Rios JL, Rai M: Naturally occurring biocides in the food industry. In Natural antimicrobials in food safety and quality. Edited by: Rai M, Chikindas M. CAB International, United Kingdom; 2011.

Agoramoorthy G, Chandrasekaran M, Venkatesalu V, Hsu MJ: Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz J Microbiol 2007, 38: 739–42. 10.1590/S1517-83822007000400028

Bajpai VK, Al-reza SM, Choi UK, Lee JH, Kang SC: Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metaseqoia glyptostroboides Miki ex Hu. Food Chem Toxicol 2009, 47: 1876–83. 10.1016/j.fct.2009.04.043

Bajpai VK, Sharma A, Baek KH: Antibacterial mechanism of action of Texus cuspidate stem essential oil against selected foodborne pathogens. J Food Safety 2013, 33: 348–59. 10.1111/jfs.12059

Bassole IHN, Juliani HR: Essential oils in combination and their antimicrobial properties. Molecules 2012, 17: 3989–4006. 10.3390/molecules17043989

Bezic N, Skocibusic M, Dinkic V, Radonic A: Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytother Res 2003, 17: 1037–40. 10.1002/ptr.1290

Bhosale SH, Nagle VI, Jagtap TG: Antifouling potential of some marine organisms from Indian species of Bacillus and Pseudomonas . Marine Biotechnol 2002, 4: 111–8. 10.1007/s10126-001-0087-1

Carson CF, Mee BJ, Riley TV: Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agent Chemother 2002, 46: 1914–20. 10.1128/AAC.46.6.1914-1920.2002

Cox SD, Mann CM, Markhan JL, Gustafson JE, Warmington JR, Wyllie SG: Determining the antimicrobial action of tea tree oil. Molecules 2001, 6: 87–91. 10.3390/60100087

Crasta PJ, Raviraja NS, Sridhar KR: Antimicrobial activity of some marine algae of southwest coast of India. Indian J Marine Sci 1997, 26: 201–5.

Davidson PM, Branen AL: Food antimicrobials - an introduction. In Antimicrobial in food. Edited by: Davidson PM, Sofos JN, Branen AL. CRC Press, Boca Raton, FL; 2005. 10.1201/9781420028737

Deep A, Phogat P, Kumar M, Kakkar S, Mittal SK, Malhotra M: New tetradecanoic acid hydrazones in the search for antifungal agents: synthesis and in vitro evaluations. Acta Poloniae Pharmaceut Drug Res 2012, 69: 129–33.

Demirel Z, Yilmaz-Koz FF, Karabay-Yavasoglu NU, Ozdemir G, Sukatar A: Antimicrobial and antioxidant activities of solvent extracts and the essential oil composition of Laurencia obtusa and Laurencia obtusa var. pyramidata . Romanian Biotechnol Lett 2011, 16: 5927–36.

Diao WR, Hu QP, Feng SS, Li WQ, Xu JG: Chemical composition and antibacterial activity of the essential oil from green huajiao ( Zanthoxylum schinifolium ) against selected foodborne pathogens. J Agric Food Chem 2013, 61: 6044–9. 10.1021/jf4007856

Faid M: Antimicrobials from marine algae. In Natural antimicrobials in food safety and quality. Edited by: Rai M, Chikindas M. CAB international, United Kingdom; 2011.

Ghannoum MA: Studies on the anticandidal mode of action of Allium sativum (garlic). J Gen Microbiol 1988, 134: 2917–24.

Goni P, Lopez P, Sanchez C, Gomez-Lus R, Becerril R, Nerin C: Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem 2009, 116: 982–9. 10.1016/j.foodchem.2009.03.058

Gressler V, Stein EM, Dorr F, Fujii MT, Colepicolo P, Pinto E: Sesquiterpenes from the essential oil of Laurencia dendroidea (Ceramiales, Rhodophyta): isolation, biological activities and distribution among seaweeds. Brazilian J Pharmacog 2011, 21: 248–54.

Gutierrez A, Rio JCD, Martinez-Inigo MJ, Martinez MJ, Martinez AT: Production of new unsaturated lipids during wood decay by Ligninolytic basidiomycetes . Appl Environ Microbiol 2002, 68: 1344–50. 10.1128/AEM.68.3.1344-1350.2002

Hugo W, Snow G: Biochemistry of antibacterial action. Chapman & Hall, London; 1981.

Jemaa JMB: Essential oil as a source of bioactive constituents for the control of insect pests of economic importance in Tunisia. Med Aromatic Plants 2014, 3: 1–7.

Joray MB, del-Rollan MR, Ruiz GM, Palacios SM, Carpinella MC: Antibacterial activity of extracts from plants of central Argentina- isolation of an active principle from Achyrocline satureioides . Plant Med 2011, 77: 95–100. 10.1055/s-0030-1250133

Kamat SY, Wahidulla S, D’Souza L, Naik CG, Ambiye V, Bhakuni DS, et al.: Bioactivity of marine organisms-Vl. Antiviral evaluation of marine algal extracts from the Indian coast. Bot Mar 1992, 35: 161–4. 10.1515/botm.1992.35.2.161

Khwaldia K: Antimicrobial films and coatings from milk proteins. In Natural antimicrobials in food safety and quality. Edited by: Rai M, Chikindas M. CAB International, United Kingdom; 2011.

Kim J, Marshall MR, Wei C: Antibacterial activity of some essential oil components against five foodborne pathogens. J Agric Food Chem 1995, 43: 2839–45. 10.1021/jf00059a013

Kong M, Chen XG, Liu CS, Meng XH, Yu LJ: Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli . Colloid Surface B 2008, 65: 197–202. 10.1016/j.colsurfb.2008.04.003

Kotzekidou P, Giannakidis P, Boulamatsis A: Antimicrobial activity of some plant extracts and essential oils against foodborne pathogens in vitro and on the fate of inoculated pathogens in chocolate. LWT- Food Sci Technol 2008, 41: 119–27. 10.1016/j.lwt.2007.01.016

Koz FFY, Yavasoglu NUK, Demirel Z, Sukatar A, Ozdemir G: Antioxidant and antimicrobial activities of Codium fragile (Suringar) Hariot (Chlorophyta) essential oil and extracts. Asian J Chem 2009, 21: 1197–209.

Kubo I, Fujita K, Kubo A, Nihei K, Ogura T: Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis . J Agric Food Chem 2004, 52: 3329–32. 10.1021/jf0354186

Lategan C, Kellerman T, Afolayan AF, Mann MG, Antunes EM, Smith PJ, et al.: Antiplasmodial and antimicrobial activities of South African marine algal extracts. Pharm Biol 2009, 47: 408–13. 10.1080/13880200902758832

Lee JY, Kim YS, Shin DH: Antimicrobial synergistic effect of linolenic acid and monoglyceride against Bacillus cereus and Staphylococcus aureus . J Agric Food Chem 2002, 50: 2193–9. 10.1021/jf011175a

Miksusanti JB, Priosoeryanto B, Syarief R, Rekso G: Mode of action Temu kunci ( Kaempferia pandurata ) essential oil on E. coli K1.1 cell determined by leakage of material cell and salt tolerance assays. Hayati J Biosci 2008, 15: 56–60.

Nazzaro F, Fratianni F, Martina LD, Coppola R, De-Feo V: Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6: 1451–74. 10.3390/ph6121451

Nikaido H: Outer membrane. In Escherichia coli and Salmonella: cellular and molecular biology. Edited by: Neidhardt FC. ASM Press, Washington, DC; 1996.

Patra JK, Kim SH, Baek KH: Antioxidant and free radical scavenging potential of essential oil from Enteromorpha linza L. prepared by microwave assisted hydrodistillation. J Food Biochem 2015, 39: 80–90. 10.1111/jfbc.12110

Patra JK, Patra AP, Mohapatra NK, Das S, Thatoi H, Sahu RK, et al.: Biomolecular constituents and antibacterial activity of some marine algae from Chilika Lake (Orissa, India). Int J Algae 2009, 11: 222–35. 10.1615/InterJAlgae.v11.i3.30

Plaza M, Santoyo S, Jaime L, Garcia-Blairsy Reina G, Herrero M, Senorans MJ, et al.: Screening for bioactive compounds from algae. J Pharma Biomed Anal 2010, 51: 450–5. 10.1016/j.jpba.2009.03.016

Salvador N, Garreta AG, Lavelli L, Ribera MA: Antimicrobial activity of Iberian macroalgae. Scientia Marina 2007, 71: 101–13. 10.3989/scimar.2007.71n1101

Say PJ, Burrows IG, Whitton BA: Enteromorpha as a monitor of heavy metals in estuarine and coastal intertidal waters: A method for the sampling, treatment and analysis of the seaweed Enteromorpha to monitor heavy metals in estuaries and coastal waters. Northern Environmental Consultants Ltd, Durham DH8 6SS, UK; 1986.

Sfeir J, Lefrancois C, Baudoux D, Derbre S, Licznar P: In vitro antibacterial activity of essential oils against Streptococcus pyogenes . Evid based Complement Altern Med 2013, 2013: 1–9. 10.1155/2013/269161

Sharma A, Bajpai VK, Baek KH: Determination of antibacterial mode of action of Allium sativum essential oil against foodborne Pathogens using membrane permeability and Surface characteristic parameters. J Food Safety 2013, 33: 197–208. 10.1111/jfs.12040

Sharma V, Chitranshi N, Agarwal AK: Significance and biological importance of pyrimidine in the microbial world. Int J Med Chem 2014, 2014: 1–31.

Souhaili Z, Mohammadi H, Habti N, Faid M: Lethal effect of the aqueous extract of the brown marine algae ( Cystoseira tamariscifolia ) on the mouse and the myelom cells. Afrique Sci 2008, 4: 580–90.

Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al.: Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 2005, 49: 2474–8. 10.1128/AAC.49.6.2474-2478.2005