Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries

May Lei Mei1, Quan-li Li2, Chun Hung Chu1, LP Samaranayake1
1Faculty of Dentistry, The University of Hong Kong, , People’s Republic of China
2Stomatology Collage, Anhui Medical Univerisity, Hefei, People’s Republic of China

Tóm tắt

Abstract Backgrounds Silver diamine fluoride (SDF) has clinical success in arresting dentin caries, this study aimed to investigate its mechanism of action. Methods Using a computer-controlled artificial mouth, we studied the effect of 38% SDF on cariogenic biofilms and dentin carious lesions. We used five common cariogenic bacteria (Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus rhamnosus and Actinomyces naeslundii) to form a cariogenic biofilm that generated carious lesions with a depth of approximately 70 um on human dentin blocks. We applied 38% SDF to the lesions in the test group and water to those in the control group. The blocks were incubated in the artificial mouth for 21 days before evaluation. Microbial kinetics, architecture, viability and distribution were evaluated every 7 days using colony forming unit (CFU), scanning electron microscopy and confocal laser scanning microscopy. The physical properties of the carious lesions were evaluated with microhardness testing, energy dispersive spectroscopy (EDS) and Fourier transform infra-red spectroscopy (FTIR). Results The CFU results revealed fewer colony forming units in the test group compared with the control group (p < 0.01). Scanning electron microscopy and confocal microscopy showed less bacterial growth in the test group, and confluent cariogenic biofilm in the control group (p < 0.01). The microhardness and weight percentages of calcium and phosphorus in the test group from the outermost 50mum were higher than in the control group (p < 0.05). EDS showed that calcium and phosphous were higher in outer 50 mum in test groups than in the control FTIR revealed less exposed collagen I in the test lesions compared with the control group (p < 0.01). Conclusions 38% SDF inhibits multi-species cariogenic biofilm formation on dentin carious lesions and reduces the demineralization process.

Từ khóa


Tài liệu tham khảo

Chu CH, Mei ML, Lo EC: Use of fluorides in dental caries management. Gen Dent. 2010, 58: 37-43. quiz 44-5, 79-80,

Chu CH, Lo EC, Lin HC: Effectiveness of silver diamine fluoride and sodium fluoride varnish in arresting dentin caries in Chinese pre-school children. J Dent Res. 2002, 81: 767-770. 10.1177/154405910208101109

Llodra JC, Rodriguez A, Ferrer B, Menardia V, Ramos T, Morato M: Efficacy of silver diamine fluoride for caries reduction in primary teeth and first permanent molars of schoolchildren: 36-month clinical trial. J Dent Res. 2005, 84: 721-724. 10.1177/154405910508400807

Lo EC, Luo Y, Tan HP, Dyson JE, Corbet EF: ART and conventional root restorations in elders after 12 months. J Dent Res. 2006, 85: 929-932. 10.1177/154405910608501011

Liu BY, Lo EC, Chu CH, Lin HC: Randomized trial on fluorides and sealants for fissure caries prevention. J Dent Res. 2012, 91: 753-758. 10.1177/0022034512452278

Chu CH, Mei L, Seneviratne CJ, Lo EC: Effects of silver diamine fluoride on dentine carious lesions induced by Streptococcus mutans and Actinomyces naeslundii biofilms. Int J Paediatr Dent. 2012, 22: 2-10.

Knight GM, McIntyre JM, Craig GG, Mulyani , Zilm PS: The inability of Streptococcus mutans and Lactobacillus acidophilus to form a biofilm in vitro on dentine pretreated with ozone. Aust Dent J. 2008, 53: 349-353. 10.1111/j.1834-7819.2008.00077.x

Mei ML, Chu CH, Lo EC, Samaranayake LP: Fluoride and silver concentrations of silver diamine fluoride solutions for dental use. Int J Paediatr Dent. 2012, Epub ahead of print,

Yee R, Holmgren C, Mulder J, Lama D, Walker D, Van Palenstein Helderman W: Efficacy of silver diamine fluoride for arresting caries treatment. J Dent Res. 2009, 88: 644-647. 10.1177/0022034509338671

Zhi QH, Lo EC, Lin HC: Randomized clinical trial on effectiveness of silver diamine fluoride and glass ionomer in arresting dentine caries in preschool children. J Dent. 2012, 40: 962-967. 10.1016/j.jdent.2012.08.002

Davey ME, Costerton JW: Molecular genetics analyses of biofilm formation in oral isolates. Periodontology 2000. 2006, 42: 13-26. 10.1111/j.1600-0757.2006.00052.x

Shu M, Wong L, Miller JH, Sissons CH: Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Arch Oral Biol. 2000, 45: 27-40. 10.1016/S0003-9969(99)00111-9

Tang G, Yip HK, Cutress TW, Samaranayake LP: Artificial mouth model systems and their contribution to caries research: a review. J Dent. 2003, 31: 161-171. 10.1016/S0300-5712(03)00009-5

Rasiah IA, Wong L, Anderson SA, Sissons CH: Variation in bacterial DGGE patterns from human saliva: over time, between individuals and in corresponding dental plaque microcosms. Arch Oral Biol. 2005, 50: 779-787. 10.1016/j.archoralbio.2005.02.001

Mei ML, Chu CH, Lo EC, Samaranayake LP: Preventing root caries development under oral biofilm challenge in an artificial mouth. Med Oral Patol Oral Cir Bucal. 2013, in press,

Thomas RZ, Ruben JL, ten Bosch JJ, Huysmans MC: Effect of ethylene oxide sterilization on enamel and dentin demineralization in vitro. J Dent. 2007, 35: 547-551. 10.1016/j.jdent.2007.03.002

Marsh PD, Nyvad B: The oral microflora and biofilms on teeth. Dental caries the disease and its clinical management. Edited by: Fejerskov O, Kidd E. 2008, 164-187. Oxford: Blackwell Munksgaard,

Samaranayake YH, Ye J, Yau JY, Cheung BP, Samaranayake LP: In vitro method to study antifungal perfusion in Candida biofilms. J Clin Microbiol. 2005, 43: 818-825. 10.1128/JCM.43.2.818-825.2005

Chu CH, Lo EC: Microhardness of dentine in primary teeth after topical fluoride applications. J Dent. 2008, 36: 387-391. 10.1016/j.jdent.2008.02.013

Love RM, Jenkinson HF: Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med. 2002, 13: 171-183. 10.1177/154411130201300207

Byun R, Nadkarni MA, Chhour KL, Martin FE, Jacques NA, Hunter N: Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol. 2004, 42: 3128-3136. 10.1128/JCM.42.7.3128-3136.2004

Marsh PD, Martin MV, Lewis MA, Williams DW: Dental plaque. Oral microbiology. Edited by: Marsh PD. 2009, 82-104. Livingstone: Churchill,

Chu CH, Lo EC: Promoting caries arrest in children with silver diamine fluoride: a review. Oral Health Prev Dent. 2008, 6: 315-321.

Shen Y, Qian W, Chung C, Olsen I, Haapasalo M: Evaluation of the effect of two chlorhexidine preparations on biofilm bacteria in vitro: a three-dimensional quantitative analysis. J Endod. 2009, 35: 981-985. 10.1016/j.joen.2009.04.030

Wu MY, Suryanarayanan K, van Ooij WJ, Oerther DB: Using microbial genomics to evaluate the effectiveness of silver to prevent biofilm formation. Water Sci Technol. 2007, 55: 413-419. 10.2166/wst.2007.285

Tamesada M, Kawabata S, Fujiwara T, Hamada S: Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. J Dent Res. 2004, 83: 874-879. 10.1177/154405910408301110

Koo H: Strategies to enhance the biological effects of fluoride on dental biofilms. Adv Dent Res. 2008, 20: 17-21. 10.1177/154407370802000105

Hosoya Y, Marshall SJ, Watanabe LG, Marshall GW: Microhardness of carious deciduous dentin. Oper Dent. 2000, 25: 81-89.

Yokoyama K, Matsumoto K, Murase J: Permeability of the root canal wall and occlusion of dentinal tubules by Ag(NH3)2F: a comparison of combined use with pulsed Nd:YAG laser or iontophoresis. J Clin Laser Med Surg. 2000, 18: 9-14.

Yu DG, Kimura Y, Fujita A, Hossain M, Kinoshita JI, Suzuki N, Matsumoto K: Study on acid resistance of human dental enamel and dentin irradiated by semiconductor laser with Ag(NH3)2F solution. J Clin Laser Med Surg. 2001, 19: 141-146. 10.1089/10445470152927973

ten Cate JM, Larsen MJ, Pearce EI, Fejerskov O: Chemical interactions between the tooth and oral fluids. Dental Caries The Disease and its Clinical Management. -Volume 209–230. Edited by: Fejerskov O, Kidd E. 2008, Oxford: Blackwell Munksgaard,

Di Renzo M, Ellis TH, Sacher E, Stangel I: A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: I. Demineralization. Biomaterials. 2001, 22: 787-792. 10.1016/S0142-9612(00)00240-4

Yip HK, Guo J, Wong WH: Protection offered by root-surface restorative materials against biofilm challenge. J Dent Res. 2007, 86: 431-435. 10.1177/154405910708600508

Mei ML, Li QL, Chu CH, Yiu CK, Lo EC: The inhibitory effects of silver diamine fluoride at different concentrations on matrix metalloproteinases. Dent Mater. 2012, 28: 903-908. 10.1016/j.dental.2012.04.011

Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S: The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res. 2006, 85: 22-32. 10.1177/154405910608500104