Anti-Tumor Effect of Protoscolex Hydatid Cyst Somatic Antigen on Inhibition Cell Growth of K562

Acta Parasitologica - Tập 68 - Trang 385-392 - 2023
Atefe Asouli1, Soheil Sadr2, Hadi Mohebalian1, Hassan Borji1
1Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
2Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Tóm tắt

Today, cancer is one of the most important causes of death in the world, and so far, many treatment methods have been used in this field. Immunotherapy is considered one of the newest developments in this science, and it is still being investigated in some forms in different cancers and with a variety of antigens as well. One of the subsets of cancer immunotherapy is its treatment using parasitic antigens. The present study evaluated the effect of using somatic antigens of protoscoleces of Echinococcus granulosus on K562 cancer cells. In this study, hydatid cysts’ protoscolex antigens were extracted, purified, and added to K562 cancer cells at three concentrations (0.1, 1, and 2 mg/ml) and on three times (24, 48, and 72 h). The number of apoptotic cells was compared to the control flask. The antigen concentration of 2 mg/ml was used as a control sample to investigate its cytotoxic effect on the growth of healthy HFF3 cells. Annexin V and PI tests were also performed to differentiate apoptosis from necrosis. In flasks treated with hydatid cyst protoscolex antigen, all three concentrations significantly reduced the growth of cancer cells compared with the control flask, and concentration 2 of crude antigen significantly caused the death of cancer cells. Furthermore, more cancer cells underwent apoptosis by increasing the time of exposure to the antigen. On the other hand, flow cytometry results also showed that the amount of apoptosis has increased compared to the control group. In fact, Protoscolex hydatid cyst somatic antigens induce programmed cell death in K562 cancer cells while not having a cytotoxic effect on normal cells. Therefore, it is suggested to do more research on the anti-cancer and therapeutic properties of the antigens of this parasite.

Tài liệu tham khảo

Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST (2019) Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol 15(4):199–219. https://doi.org/10.1038/s41581-019-0116-9 Matthews HK, Bertoli C, de Bruin RA (2022) Cell cycle control in cancer. Nat Rev Mol Cell Biol 23(1):74–88. https://doi.org/10.1038/s41580-021-00404-3 Dang F, Nie L, Wei W (2021) Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ 28(2):427–438. https://doi.org/10.1038/s41418-020-00648-0 Leal-Esteban LC, Fajas L (2020) Cell cycle regulators in cancer cell metabolism. Biochim Biophys Acta Mol Basis Dis 1866(5):165715. https://doi.org/10.1016/j.bbadis.2020.165715 Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059 Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321(3):288–300. https://doi.org/10.1001/jama.2018.19323 Hegde PS, Chen DS (2020) Top 10 challenges in cancer immunotherapy. Immunity 52(1):17–35. https://doi.org/10.1016/j.immuni.2019.12.011 dos Santos ALF, de Almeida DRQ, Terra LF, Baptista MCS, Labriola L (2019) Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treat. 5:25. https://doi.org/10.20517/2394-4722.2018.83 Kwon S, Ko H, You DG, Kataoka K, Park JH (2019) Nanomedicines for reactive oxygen species mediated approach: an emerging paradigm for cancer treatment. Acc Chem Rese 52(7):1771–1782. https://doi.org/10.1021/acs.accounts.9b00136 Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM (2019) Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev 36:70–87. https://doi.org/10.1016/j.blre.2019.04.005 Houshmand M, Simonetti G, Circosta P, Gaidano V, Cignetti A, Martinelli G et al (2019) Chronic myeloid leukemia stem cells. Leukemia 33(7):1543–1556. https://doi.org/10.1038/s41375-019-0490-0 Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E et al (2021) Acute myeloid leukemia: current progress and future directions. Blood cancer J 11(2):1–25. https://doi.org/10.1038/s41408-021-00425-3 DiNardo CD, Wei AH (2020) How I treat acute myeloid leukemia in the era of new drugs. Blood 135(2):85–96. https://doi.org/10.1182/blood.2019001239 Krementsov N (2009) Trypanosoma cruzi, cancer and the Cold War. Hist Cienc Saude Manguinhos 16:75–94. https://doi.org/10.1590/S0104-59702009000500005 Xu L-Q, Yao L-J, Jiang D, Zhou L-J, Chen M, Liao W-Z et al (2021) A uracil auxotroph Toxoplasma gondii exerting immunomodulation to inhibit breast cancer growth and metastasis. Parasit Vectors 14(1):1–14. https://doi.org/10.1186/s13071-021-05032-6 Eissa MM, Ismail CA, El-Azzouni MZ, Ghazy AA, Hadi MA (2019) Immuno-therapeutic potential of Schistosoma mansoni and Trichinella spiralis antigens in a murine model of colon cancer. Invest New Drugs 37(1):47–56. https://doi.org/10.1007/s10637-018-0609-6 Luo J, Yu L, Xie G, Li D, Su M, Zhao X et al (2017) Study on the mitochondrial apoptosis pathways of small cell lung cancer H446 cells induced by Trichinella spiralis muscle larvae ESPs. Parasitology 144(6):793–800. https://doi.org/10.1017/S0031182016002535 Junqueira C, Santos LI, Galvão-Filho B, Teixeira SM, Rodrigues FG, DaRocha WD et al (2011) Trypanosoma cruzi as an effective cancer antigen delivery vector. Proc Natl Acad Sci 108(49):19695–19700. https://doi.org/10.1073/pnas.1110030108 Fox BA, Butler KL, Guevara RB, Bzik DJ (2017) Cancer therapy in a microbial bottle: uncorking the novel biology of the protozoan Toxoplasma gondii. PLoS Pathog 13(9):e1006523. https://doi.org/10.1371/journal.ppat.1006523 Tarp MA, Clausen H (2008) Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim Biophys Acta Gen Subj 1780(3):546–563. https://doi.org/10.1016/j.bbagen.2007.09.010 Leonardi I, Frey I, Rogler G (2015) Helminth therapy for organic diseases? Transl Res 166(6):586–601. https://doi.org/10.1016/j.trsl.2015.06.016 Chookami MB, Sharafi SM, Sefiddashti RR, Jafari R, Bahadoran M, Pestechian N et al (2016) Effect of two hydatid cyst antigens on the growth of melanoma cancer in C57/black mice. J parasit dis 40(4):1170–1173. https://doi.org/10.1007/s12639-015-0643-7 Yousofi Darani H, Soozangar N, Khorami S, Taji F, Yousofi M, Shirzad H (2012) Hydatid cyst protoscolices induce cell death in WEHI-164 fibrosarcoma cells and inhibit the proliferation of baby hamster kidney fibroblasts in vitro. J Parasitol Res. https://doi.org/10.1155/2012/304183 Darani HY, Yousefi M (2012) Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy. Future Oncol 8(12):1529–1535. https://doi.org/10.2217/fon.12.155 Daneshpour S, Bahadoran M, Hejazi SH, Eskandarian AA, Mahmoudzadeh M, Darani HY (2016) Common antigens between hydatid cyst and cancers. Adv biomed res 2016:5. https://doi.org/10.4103/2277-9175.175242 Gundogdu SB, Saylam B, Tez M (2017) Cyst hydatid and cancer: The myth continues. Clin Chem Lab Med (CCLM) 55(7):e150–e151. https://doi.org/10.1515/cclm-2016-0626 Callejas BE, Martinez-Saucedo D, Terrazas LI (2018) Parasites as negative regulators of cancer. Biosci Rep. https://doi.org/10.1042/BSR20180935 Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD (2015) Simple sugars to complex disease—mucin-type O-glycans in cancer. Adv cancer res 126:53–135. https://doi.org/10.1016/bs.acr.2014.11.002 Brockhausen I (2006) Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO rep 7(6):599–604. https://doi.org/10.1038/sj.embor.7400705 Burchell JM, Beatson R, Graham R, Taylor-Papadimitriou J, Tajadura-Ortega V (2018) O-linked mucin-type glycosylation in breast cancer. Biochem Soc Trans 46(4):779–788. https://doi.org/10.1042/BST20170483 Osinaga E (2007) Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites. IUBMB Life 59(4–5):269–273. https://doi.org/10.1080/15216540601188553 Wen H, Vuitton L, Tuxun T, Li J, Vuitton DA, Zhang W et al (2019) Echinococcosis: advances in the 21st century. Clin microbiol rev 32(2):e00075-e118. https://doi.org/10.1128/CMR.00075-18 Khademvatan S, Majidiani H, Foroutan M, Tappeh KH, Aryamand S, Khalkhali H (2019) Echinococcus granulosus genotypes in Iran: a systematic review. J helminthol 93(2):131–138. https://doi.org/10.1017/S0022149X18000275 Woolsey ID, Miller AL (2021) Echinococcus granulosus sensu lato and Echinococcus multilocularis: a review. Res vet sci 135:517–522. https://doi.org/10.1016/j.rvsc.2020.11.010 Romig T, Ebi D, Wassermann M (2015) Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Vet Parasitol 213(3–4):76–84. https://doi.org/10.1016/j.vetpar.2015.07.035 Ghabdian S, Parande Shirvan S, Maleki M, Borji H (2022) Exacerbation of allergic asthma by somatic antigen of Echinococcus granulosus in allergic airway inflammation in BALB/c mice. Parasit Vectors 15(1):1–9. https://doi.org/10.1186/s13071-021-05125-2 Nedeljković M, Damjanović A (2019) Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells 8(9):957. https://doi.org/10.3390/cells8090957 Pokhriyal R, Hariprasad R, Kumar L, Hariprasad G (2019) Chemotherapy resistance in advanced ovarian cancer patients. Biomark Cancer 11:1179299X19860815. https://doi.org/10.1177/1179299X19860815 Foo J, Michor F (2014) Evolution of acquired resistance to anti-cancer therapy. J theor biol 355:10–20. https://doi.org/10.1016/j.jtbi.2014.02.025 Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int j mol sci 21(9):3233. https://doi.org/10.3390/ijms21093233 Mudassar F, Shen H, O’Neill G, Hau E (2020) Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res 39(1):1–17. https://doi.org/10.1186/s13046-020-01724-6 Álvarez JP, Teneb J, Maldonado I, Weinberger K, Rosas C, Lemus D et al (2020) Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties. Immunobiol 225(1):151863. https://doi.org/10.1016/j.imbio.2019.10.012 Payne SN, Emmerich PB, Davis NM, Deming DA, Knoll LJ (2021) Novel murine pancreatic tumor model demonstrates immunotherapeutic control of tumor progression by a Toxoplasma gondii protein. Infect Immun 89(12):e00508-e521. https://doi.org/10.1128/IAI.00508-21 Plumelle Y, Gonin C, Edouard A, Bucher BJ, Thomas L, Brebion A et al (1997) Effect of Strongyloides stercoralis infection and eosinophilia on age at onset and prognosis of adult T-cell leukemia. Am j clin pathol 107(1):81–87. https://doi.org/10.1093/ajcp/107.1.81 Zhang X, Cai N, Sun L, Luo Q, An F (2007) Apoptosis of human leukemia K562 cell in vitro induced by Toxoplasma gondii. Chin J Parasitol Parasit Dis 25(3):185–188 (PMID: 18038773) Raisnia R, Mohebalian H, Shahrokhi A, Borji H (2022) Anti-tumor effect of Marshallagia marshalli somatic antigen on inhibition cell growth of K562. Iran J Parasitol 17(1):28. https://doi.org/10.18502/ijpa.v17i1.9013 Arefkhah N, Mosaviasl F, Taghipour S, Yousofi Darani H (2013) Effects of hydatid cyst antigen on Hella cells in vitro. J Shahrekord Uuniv Med Sci 15. http://78.39.35.44/article-1-1355-en.html Berriel E, Russo S, Monin L, Festari MF, Berois N, Fernández G et al (2013) Antitumor activity of human hydatid cyst fluid in a murine model of colon cancer. Sci World J. https://doi.org/10.1155/2013/230176 Wang X, Fu B, Yang S, Wu X, Cui G, Liu M et al (2009) Trichinella spiralis—a potential anti-tumor agent. Vet parasitol 159(3–4):249–252. https://doi.org/10.1016/j.vetpar.2008.10.052