Annotation and expression of carboxylesterases in the silkworm, Bombyx mori

Qiuhan Yu1, Cheng Lü2, Wenle Li2, Xiang Zhang2, Ze Zhang2
1The Institute of Agricultural and Life Sciences, Chongqing University, Chongqing, 400044, China
2The Key Sericultural Laboratory of the Agricultural Ministry of China, Southwest University, Chongqing, 400716, China

Tóm tắt

Abstract Background Carboxylesterase is a multifunctional superfamily and ubiquitous in all living organisms, including animals, plants, insects, and microbes. It plays important roles in xenobiotic detoxification, and pheromone degradation, neurogenesis and regulating development. Previous studies mainly used Dipteran Drosophila and mosquitoes as model organisms to investigate the roles of the insect COEs in insecticide resistance. However, genome-wide characterization of COEs in phytophagous insects and comparative analysis remain to be performed. Results Based on the newly assembled genome sequence, 76 putative COEs were identified in Bombyx mori. Relative to other Dipteran and Hymenopteran insects, alpha-esterases were significantly expanded in the silkworm. Genomics analysis suggested that BmCOEs showed chromosome preferable distribution and 55% of which were tandem arranged. Sixty-one BmCOEs were transcribed based on cDNA/ESTs and microarray data. Generally, most of the COEs showed tissue specific expressions and expression level between male and female did not display obvious differences. Three main patterns could be classified, i.e. midgut-, head and integument-, and silk gland-specific expressions. Midgut is the first barrier of xenobiotics peroral toxicity, in which COEs may be involved in eliminating secondary metabolites of mulberry leaves and contaminants of insecticides in diet. For head and integument-class, most of the members were homologous to odorant-degrading enzyme (ODE) and antennal esterase. RT-PCR verified that the ODE-like esterases were also highly expressed in larvae antenna and maxilla, and thus they may play important roles in degradation of plant volatiles or other xenobiotics. Conclusion B. mori has the largest number of insect COE genes characterized to date. Comparative genomic analysis suggested that the gene expansion mainly occurred in silkworm alpha-esterases. Expression evidence indicated that the expanded genes were specifically expressed in midgut, integument and head, implying that these genes may have important roles in detoxifying secondary metabolites of mulberry leaves, contaminants in diet, and odorants. Our results provide some new insights into functions and evolutionary characteristics of COEs in phytophagous insects.

Từ khóa


Tài liệu tham khảo

Satoh T, Hosokawa M: The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol. 1998, 38: 257-288. 10.1146/annurev.pharmtox.38.1.257.

Marshall SD, Putterill JJ, Plummer KM, Newcomb RD: The carboxylesterase gene family from Arabidopsis thaliana. J Mol Evol. 2003, 57: 487-500. 10.1007/s00239-003-2492-8.

Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R: Evolution of multigene families associated with insecticide resistance. Science. 2002, 298: 179-181. 10.1126/science.1076781.

Bornscheuer UT: Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev. 2002, 26: 73-81. 10.1111/j.1574-6976.2002.tb00599.x.

Oakeshott JG, Claudianos C, Campbell PM, Newcomb RD, Russell RJ: Biochemical genetics and genomics of insect esterases. Comprehensive molecular insect science. Edited by: Gilbert LI, Iatrou K, Gill SS. 2005, London: Elsevier, 5: 309-361. full_text.

Li X, Schuler MA, Berenbaum MR: Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol. 2007, 52: 231-253. 10.1146/annurev.ento.51.110104.151104.

Vogt RG: Molecular basis of pheromone detection in insects. Comprehensive insect physiology, biochemistry, pharmacology and molecular biology. Edited by: Gilbert LI, Iatrou K, Gill SS. 2005, London: Elsevier, 3: 753-804.

Riddiford LM, Hiruma K, Zhou X, Nelson CA: Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol. 2003, 33: 1327-1338. 10.1016/j.ibmb.2003.06.001.

Taylor P, Radic Z: The cholinesterases: From genes to proteins. Annu Rev Pharmacol Toxicol. 1994, 34: 281-320. 10.1146/annurev.pa.34.040194.001433.

Hemingway J, Karunaratne SH: Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol. 1998, 12: 1-12. 10.1046/j.1365-2915.1998.00082.x.

Lindroth RL: Host plant alteration of detoxification activity in Papilio glaucus glaucus. Entomol Exp Appl. 1989, 50: 29-36. 10.1007/BF00190125.

Lindroth RL, Weisbrod AV: Genetic variation in response of the gypsy moth to aspen phenolic glycosides. Biochem Syst Ecol. 1991, 19: 97-103. 10.1016/0305-1978(91)90031-T.

Ghumare SS, Mukherjee SN, Sharma RN: Effects of rutin on the neonate sensitivity, dietary utilization and midgut carboxylesterase activity of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Proc Indian Acad Sci Anim Sci. 1989, 98: 399-404.

Cai QN, Han Y, Cao YZ, Hu Y, Zhao X, Bi JL: Detoxification of gramine by the cereal aphid Sitobion avenae. J Chem Ecol. 2009, 35: 320-5. 10.1007/s10886-009-9603-y.

Gao XW, Zhao Y, Wang X, Dong XL, Zheng BZ: Induction of carboxylesterase in Helicoverpa armigera by insecticides and plast allelochemicals. Acta Entamol Sinica. 1998, 41 (Suppl): 5-11. In Chinese with English abstract

Mu SF, Pei L, Gao XW: Effects of quercetin on specific activity of carboxylesteras and glutathione S-transferase in Bemisia tabaci. Chinese Bulletin Entomol. 2006, 43: 491-495. In Chinese with English abstract

Konno K, Ono H, Nakamura M, Tateishi K, Hirayama C, Tamura Y, Koyama A, Kohno K: Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. Proc Natl Acad Sci USA. 2006, 103: 1337-1341. 10.1073/pnas.0506944103.

Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS: Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.). J Agric Food Chem. 2001, 49: 4208-4213. 10.1021/jf010567e.

Daimon T, Taguchi T, Meng Y, Katsuma S, Mita K, Shimada T: Beta-fructofuranosidase genes of the silkworm, Bombyx mori: insights into enzymatic adaptation of B. mori to toxic alkaloids in mulberry latex. J Biol Chem. 2008, 283: 15271-15279. 10.1074/jbc.M709350200.

The International Silkworm Genome Consortium: The genome of a lepidopteran model insect, the silkworm Bombyx mori. insect Biochem Mol Biol. 2008, 38: 1036-1045. 10.1016/j.ibmb.2008.11.004.

Yoshitake N: On the esterase types in the mid gut of the silkworm Bombyx mori L. J Seric Sci Jpn. 1963, 32: 289-291.

Eguchi M, Sugimoto T: Changes in esterase zymograms of the silkworm Bombyx mori L. during development. J Sericult Sci Jpn. 1964, 33: 321-326.

Eguchi M, Yosuitaki N, Kai H: Type and inheritance of blood esterase in silkworm Bombyx mori L. Jpn J Genet. 1965, 40: 15-19. 10.1266/jjg.40.15.

Xia QY, Cheng DJ, Duan J, Wang GH, Cheng TC, Zha XF, Liu C, Zhao P, Dai FY, Zhang Z, He NJ, Zhang L, Xiang ZH: Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol. 2007, 8: R162-10.1186/gb-2007-8-8-r162.

Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG: A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol. 2006, 15: 615-36. 10.1111/j.1365-2583.2006.00672.x.

Guerrero FD: Cloning of a horn fly cDNA, HiαE7, encoding an esterase whose transcript concentration is elevated in diazinon-resistant flies. Insect Biochem Mol Biol. 2000, 30: 1107-15. 10.1016/S0965-1748(00)00088-6.

de Carvalho RA, Torres TT, de Azeredo-Espin AM: A survey of mutations in the Cochliomyia hominivorax (Diptera: Calliphoridae) esterase E3 gene associated with organophosphate resistance and the molecular identification of mutant alleles. Vet Parasitol. 2006, 140: 344-351. 10.1016/j.vetpar.2006.04.010.

Oakeshott JG, Devonshire AL, Claudianos C, Sutherland TD, Horne I, Campbell PM, Ollis DL, Russell RJ: Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases. Chem Biol Interact. 2005, 157-158: 269-275. 10.1016/j.cbi.2005.10.041.

Maibeche-Coisne M, Merlin C, Francois MC, Queguiner I, Porcheron P, Jacquin-Joly E: Putative odorant-degrading esterase cDNA from the moth Mamestra brassicae: cloning and expression patterns in male and female antennae. Chem Senses. 2004, 29: 381-390. 10.1093/chemse/bjh039.

Ishida Y, Leal WS: Cloning of putative odorant-degrading enzyme and integumental esterase cDNAs from the wild silkmoth, Antheraea polyphemus. Insect Biochem Mol Biol. 2002, 32: 1775-1780. 10.1016/S0965-1748(02)00136-4.

Bai H, Ramaseshadri P, Palli SR: Identification and characterization of juvenile hormone esterase gene from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol. 2007, 37: 829-837. 10.1016/j.ibmb.2007.05.010.

Thomas BA, Church WB, Lane TR, Hammock BD: Homology model of juvenile hormone esterase from the crop pest, Heliothis virescens. Proteins. 1999, 34: 184-196. 10.1002/(SICI)1097-0134(19990201)34:2<184::AID-PROT4>3.0.CO;2-8.

Tan A, Tanaka H, Tamura T, Shiotsuki T: Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase. Proc Natl Acad Sci USA. 2005, 102: 11751-11756. 10.1073/pnas.0500954102.

Kamimura M, Takahashi M, Kikuchi K, Reza AM, Kiuchi M: Tissue-specific regulation of juvenile hormone esterase gene expression by 20-hydroxyecdysone and juvenile hormone in Bombyx mori. Arch Insect Biochem Physiol. 2007, 65: 143-151. 10.1002/arch.20186.

Vogt RG, Riddiford LM: Pheromone binding and inactivation by moth antennae. Nature. 1981, 293: 161-163. 10.1038/293161a0.

Ishida Y, Leal WS: Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA. 2005, 102: 14075-14079. 10.1073/pnas.0505340102.

Darboux I, Barthalay Y, Piovant M, Hipeau-Jacquotte R: The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties. EMBO J. 1996, 15: 4835-4843.

Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H: Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem. 1999, 264: 672-686. 10.1046/j.1432-1327.1999.00693.x.

Olson PF, Fessler LI, Nelson RE, Sterne RE, Campbell AG, Fessler JH: Glutactin, a novel Drosophila basement membrane-related glycoprotein with sequence similarity to serine esterases. EMBO J. 1990, 9: 1219-1227.

Toutant JP: Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol. 1989, 32: 423-446. 10.1016/0301-0082(89)90031-2.

Shang JY, Shao YM, Lan GJ, Yuan G, Tang ZH, Zhang CX: Expression of two types of acetylcholinesterase gene from the silkworm, Bombyx mori, in insect cells. Insect Sci. 2007, 14: 443-449.

Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M: A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc Biol Sci. 2002, 269: 2007-2016. 10.1098/rspb.2002.2122.

Hemingway J: The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol. 2000, 30: 1009-1015. 10.1016/S0965-1748(00)00079-5.

Hirakura K, Fujmoto Y, Fukai T, Nomura T: Two phenolic glycosides from the root bark of the cultivated mulberry tree. J Nat Prod. 1986, 48: 218-224. 10.1021/np50044a004.

Huang FF, Chai CL, Zhang Z, Liu ZH, Dai FY, Lu C, Xiang ZH: The UDP-glucosyltransferase multigene family in Bombyx mori. BMC Genomics. 2008, 9: 563-10.1186/1471-2164-9-563.

Dow JA: Insights into the malpighian tubule from functional genomics. J Exp Biol. 2009, 212: 435-445. 10.1242/jeb.024224.

Merlin C, Rosell G, Carot-Sans G, Francois MC, Bozzolan F, Pelletier J, Jacquin-Joly E, Guerrero A, Maibeche-Coisne M: Antennal esterase cDNAs from two pest moths, Spodoptera littoralis and Sesamia nonagrioides, potentially involved in odourant degradation. Insect Mol Biol. 2007, 16: 73-81. 10.1111/j.1365-2583.2006.00702.x.

Tanaka K, Uda Y, Ono Y, Nakagawa T, Suwa M, Yamaoka R, Touhara K: Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr Biol. 2009, 19: 881-890. 10.1016/j.cub.2009.04.035.

Kasang G, Kaissling KE, Vostrowsky O, Bestmann HJ: Bombykal, a second pheromone component of the silkworm moth Bombyx mori. Angew Chem Int Ed Engl. 1978, 17: 60-10.1002/anie.197800601.

Kasang G, Nicholls M, von Proff L: Sex pheromone conversion and degradation in antennae of the silkworm moth Bombyx mori L. Experientia. 1989, 45: 81-87. 10.1007/BF01990456.

Holmes RS, Chan J, Cox LA, Murphy WJ, VandeBerg JL: Opossum carboxylesterases: sequences, phylogeny and evidence for CES gene duplication events predating the marsupial-eutherian common ancestor. BMC Evol Biol. 2008, 8: 54-10.1186/1471-2148-8-54.

Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F: A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci USA. 2007, 104: 16215-20. 10.1073/pnas.0703904104.

Meikle DB, Sheehan KB, Phyllis DM, Richmond RC: Localization and longevity of seminal-fluid esterase-6 in mated female Drosophila melanogaster. J Insect Physiol. 1990, 36: 93-101. 10.1016/0022-1910(90)90179-J.

Hirai M, Kamimura M, Kikuchi K, Yasukochi Y, Kiuchi M, Shinoda T, Shiotsuki T: cDNA cloning and characterization of Bombyx mori juvenile hormone esterase: an inducible gene by the imidazole insect growth regulator KK-42. Insect Biochem Mol Biol. 2002, 32: 627-635. 10.1016/S0965-1748(01)00141-2.

Wang J, Xia QY, He XM, Dai MT, Ruan J, Chen J, Yu G, Yuan HF, Hu YF, Li RQ, Feng T, Ye C, Lu C, Wang J, Li SG, Wong GK, Yang HM, Wang J, Xiang ZH, Zhou ZY, Yu J: SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Res. 2005, 33: D399-D402. 10.1093/nar/gki116.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25: 4876-4882. 10.1093/nar/25.24.4876.

Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.