Sự phân bổ của Annexin A1 và sự liên quan của nó đến ung thư
Tóm tắt
Annexin A1 (ANXA1) là một protein liên kết phospholipid được điều chỉnh bởi Ca2+, có vai trò trong nhiều quá trình của tế bào. ANXA1 ban đầu được nghiên cứu rộng rãi trong việc giải quyết viêm, nhưng sau đó đã được báo cáo là biểu hiện quá mức trong một số lượng lớn các loại ung thư. Các nghiên cứu sâu hơn đã chỉ ra rằng protein này có thể có nhiều vai trò trong tiến triển ung thư và hoạt động ở nhiều mức độ khác nhau (từ khởi phát ung thư đến di căn). Điều này một phần liên quan đến vị trí của ANXA1 trong các khoang tế bào khác nhau. ANXA1 có thể hiện diện trong nhân tế bào, tế bào chất và/hoặc liên kết với màng. Vị trí cuối cùng cho phép ANXA1 bị cắt phân giải proteolytically và/hoặc có thể tiếp cận các đối tác nhận biết, đó là các thụ thể peptide formyl. Thực tế, trong một số loại ung thư, ANXA1 được tìm thấy trên bề mặt tế bào, nơi nó kích thích các thụ thể peptide formyl để khởi động các con đường oncogenic. Trong bài đánh giá hiện tại, chúng tôi xem xét các vị trí khác nhau của ANXA1 và sự liên kết của chúng với các con đường không điều hòa thường thấy trong ung thư. Chúng tôi đã cụ thể hóa các con đường không cổ điển của sự ngoại hóa ANXA1, ý nghĩa của việc cắt phân giải của nó và vai trò của phức hợp ANXA1–thụ thể peptide formyl trong sự tiến triển của ung thư.
Từ khóa
Tài liệu tham khảo
Perretti, 2004, Annexin 1 and neutrophil apoptosis, Biochem. Soc. Trans., 32, 507, 10.1042/bst0320507
Perretti, 2009, Annexin A1 and glucocorticoids as effectors of the resolution of inflammation, Nat. Rev. Immunol., 9, 62, 10.1038/nri2470
Biaoxue, 2014, Annexin A1 in malignant tumors: current opinions and controversies, Int. J. Biol. Markers, 29, e8, 10.5301/jbm.5000046
Raynal, 1994, Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins, Biochim. Biophys. Acta, 1197, 63, 10.1016/0304-4157(94)90019-1
Peers, 1993, Glucocorticoid-and non-glucocorticoid induction of lipocortins (annexins) 1 and 2 in rat peritoneal leucocytes in vivo, Br. J. Pharmacol., 108, 66, 10.1111/j.1476-5381.1993.tb13441.x
Perretti, 2000, Annexin I is stored within gelatinase granules of human neutrophil and mobilized on the cell surface upon adhesion but not phagocytosis, Cell Biol. Int., 24, 163, 10.1006/cbir.1999.0468
Walther, 2000, A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR, Mol. Cell, 5, 831, 10.1016/S1097-2765(00)80323-8
John, 2008, Annexin A1 and the formyl peptide receptor family: neuroendocrine and metabolic aspects, Curr. Opin. Pharmacol., 8, 765, 10.1016/j.coph.2008.09.005
Bizzarro, 2012, Annexin A1: novel roles in skeletal muscle biology, J. Cell Physiol., 227, 3007, 10.1002/jcp.24032
Ye, 2009, International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family, Pharmacol. Rev., 61, 119, 10.1124/pr.109.001578
Hall, 1993, Mass spectrometric and Edman sequencing of lipocortin I isolated by two-dimensional SDS/PAGE of human melanoma lysates, Proc. Natl. Acad. Sci. U.S.A., 90, 1927, 10.1073/pnas.90.5.1927
Rosengarth, 2003, A calcium-driven conformational switch of the N-terminal and core domains of annexin A1, J. Mol. Biol., 326, 1317, 10.1016/S0022-2836(03)00027-5
Rosengarth, 2001, X-ray structure of full-length annexin 1 and implications for membrane aggregation, J. Mol. Biol., 306, 489, 10.1006/jmbi.2000.4423
Glenney, 1985, Amino-terminal sequence of p36 and associated p10: identification of the site of tyrosine phosphorylation and homology with S-100, Proc. Natl. Acad. Sci. U.S.A., 82, 7884, 10.1073/pnas.82.23.7884
Johnsson, 1986, Functionally distinct serine phosphorylation sites of p36, the cellular substrate of retroviral protein kinase; differential inhibition of reassociation with p11, EMBO J., 5, 3455, 10.1002/j.1460-2075.1986.tb04669.x
Rosengarth, 1998, Ca2+-independent interaction of annexin I with phospholipid monolayers, FEBS Lett., 438, 279, 10.1016/S0014-5793(98)01318-0
Browning, 1990, Studies on the structural properties of lipocortin-1 and the regulation of its synthesis by steroids, Prog. Clin. Biol. Res., 349, 27
Gerke, 2002, Annexins: from structure to function, Physiol. Rev., 82, 331, 10.1152/physrev.00030.2001
Gerke, 2005, Annexins: linking Ca2+ signalling to membrane dynamics, Nat. Rev. Mol. Cell Biol., 6, 449, 10.1038/nrm1661
Burke, 2009, Phospholipase A2 structure/function, mechanism, and signaling, J. Lipid Res., 50, S237, 10.1194/jlr.R800033-JLR200
Ghosh, 2006, Properties of the group IV phospholipase A2 family, Prog. Lipid Res., 45, 487, 10.1016/j.plipres.2006.05.003
Nakanishi, 2006, Roles of cPLA2alpha and arachidonic acid in cancer, Biochim. Biophys. Acta, 1761, 1335, 10.1016/j.bbalip.2006.09.005
Leslie, 2015, Cytosolic phospholipase A2: physiological function and role in disease, J. Lipid Res., 56, 1386, 10.1194/jlr.R057588
Yarla, 2015, Phospholipase A2 isoforms as novel targets for prevention and treatment of inflammatory and oncologic diseases, Curr. Drug Targets
Parente, 2004, Annexin 1: more than an anti-phospholipase protein, Inflamm. Res., 53, 125, 10.1007/s00011-003-1235-z
Kim, 2001, Inhibition of cytosolic phospholipase A2 by annexin I. Specific interaction model and mapping of the interaction site, J. Biol. Chem., 276, 15712, 10.1074/jbc.M009905200
Kwon, 2012, Regulation of cytosolic phospholipase A2 phosphorylation by proteolytic cleavage of annexin A1 in activated mast cells, J. Immunol., 188, 5665, 10.4049/jimmunol.1102306
Qiu, 1998, The role of calcium and phosphorylation of cytosolic phospholipase A2 in regulating arachidonic acid release in macrophages, J. Biol. Chem., 273, 8203, 10.1074/jbc.273.14.8203
Sakaguchi, 2011, S100A11, a dual growth regulator of epidermal keratinocytes, Amino Acids, 41, 797, 10.1007/s00726-010-0747-4
He, 2009, S100A11: diverse function and pathology corresponding to different target proteins, Cell Biochem. Biophys., 55, 117, 10.1007/s12013-009-9061-8
Santamaria-Kisiel, 2006, Calcium-dependent and -independent interactions of the S100 protein family, Biochem. J., 396, 201, 10.1042/BJ20060195
Mailliard, 1996, Calcium-dependent binding of S100C to the N-terminal domain of annexin I, J. Biol. Chem., 271, 719, 10.1074/jbc.271.2.719
Rety, 2000, Structural basis of the Ca2+-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I, Structure, 8, 175, 10.1016/S0969-2126(00)00093-9
Poeter, 2013, Disruption of the annexin A1/S100A11 complex increases the migration and clonogenic growth by dysregulating epithelial growth factor (EGF) signaling, Biochim. Biophys. Acta, 1833, 1700, 10.1016/j.bbamcr.2012.12.006
White, 2006, EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation, EMBO J., 25, 1, 10.1038/sj.emboj.7600759
Jaiswal, 2015, S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells, Cell Cycle, 14, 502, 10.1080/15384101.2014.995495
Hannon, 2003, Aberrant inflammation and resistance to glucocorticoids in annexin 1−/− mouse, FASEB J., 17, 253, 10.1096/fj.02-0239fje
Chiang, 2006, The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo, Pharmacol. Rev., 58, 463, 10.1124/pr.58.3.4
Li, 2013, Molecular biology for formyl peptide receptors in human diseases, J. Mol. Med. (Berl.), 91, 781, 10.1007/s00109-013-1005-5
Schiffmann, 1975, N-formylmethionyl peptides as chemoattractants for leucocytes, Proc. Natl. Acad. Sci. U.S.A., 72, 1059, 10.1073/pnas.72.3.1059
Marasco, 1984, Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli, J. Biol. Chem., 259, 5430, 10.1016/S0021-9258(18)91029-X
Dalpiaz, 2003, Studies on human neutrophil biological functions by means of formyl-peptide receptor agonists and antagonists, Curr. Drug Targets Immune Endocr. Metabol. Disord., 3, 33, 10.2174/1568008033340333
Gavins, 2014, Annexin A1 and the regulation of innate and adaptive immunity, Front. Immunol., 3, 354
Cooray, 2014, Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses, Proc. Natl. Acad. Sci. U.S.A., 110, 18232, 10.1073/pnas.1308253110
Lacy, 1995, Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia, J. Neuroimmunol., 61, 71, 10.1016/0165-5728(95)00075-D
VanCompernolle, 2003, Expression and function of formyl peptide receptors on human fibroblast cells, J. Immunol., 171, 2050, 10.4049/jimmunol.171.4.2050
Li, 2008, Formyl-peptide receptor like 1: a potent mediator of the Ca2+ release-activated Ca2+ current ICRAC, Arch. Biochem. Biophys., 478, 110, 10.1016/j.abb.2008.07.002
Li, 2011, Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2, Oncogene, 30, 3887, 10.1038/onc.2011.112
Diakonova, 1997, Localization of five annexins in J774 macrophages and on isolated phagosomes, J. Cell Sci., 110, 1199, 10.1242/jcs.110.10.1199
Rescher, 2000, Intact Ca2+-binding sites are required for targeting of annexin 1 to endosomal membranes in living HeLa cells, J. Cell Sci., 113, 3931, 10.1242/jcs.113.22.3931
Mussunoor, 2008, The role of annexins in tumour development and progression, J. Pathol., 216, 131, 10.1002/path.2400
de Graauw, 2010, Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells, Proc. Natl. Acad. Sci. U.S.A., 107, 6340, 10.1073/pnas.0913360107
Hayes, 2002, TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2, J. Cell Biol., 158, 1239, 10.1083/jcb.200204088
Wos, 2014, [Participation of annexins in endocytosis and EGFR-mediated signal transduction], Postepy Biochem., 60, 55
Bist, 2011, Annexin-1 interacts with NEMO and RIP1 to constitutively activate IKK complex and NF-kappaB: implication in breast cancer metastasis, Oncogene, 30, 3174, 10.1038/onc.2011.28
Anbalagan, 2014, Annexin-A1 regulates microRNA-26b* and microRNA-562 to directly target NF-kappaB and angiogenesis in breast cancer cells, PLoS One, 9, e114507, 10.1371/journal.pone.0114507
Kang, 2012, The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells, Biochem. Biophys. Res. Commun., 423, 188, 10.1016/j.bbrc.2012.05.114
Sakaguchi, 2007, Truncation of annexin A1 is a regulatory lever for linking epidermal growth factor signaling with cytosolic phospholipase A2 in normal and malignant squamous epithelial cells, J. Biol. Chem., 282, 35679, 10.1074/jbc.M707538200
Han, 2014, Association of nuclear annexin A1 with prognosis of patients with esophageal squamous cell carcinoma, Int. J. Clin. Exp. Pathol., 7, 751
Zhu, 2010, Nuclear localization of annexin A1 correlates with advanced disease and peritoneal dissemination in patients with gastric carcinoma, Anat. Rec. (Hoboken), 293, 1310, 10.1002/ar.21176
Rhee, 2000, Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent, Eur. J. Biochem., 267, 3220, 10.1046/j.1432-1327.2000.01345.x
Kim, 2003, PKCdelta-dependent cleavage and nuclear translocation of annexin A1 by phorbol 12-myristate 13-acetate, Eur. J. Biochem., 270, 4089, 10.1046/j.1432-1033.2003.03800.x
Hoque, 2014, Annexins - Scaffolds modulating PKC localization and signaling, Cell Signal., 26, 1213, 10.1016/j.cellsig.2014.02.012
Hirata, 2010, Ubiquitination and SUMOylation of annexin A1 and helicase activity, Biochim. Biophys. Acta, 1800, 899, 10.1016/j.bbagen.2010.03.020
Caron, 2013, Annexin A1 is regulated by domains cross-talk through post-translational phosphorylation and SUMOYlation, Cell Signal., 25, 1962, 10.1016/j.cellsig.2013.05.028
Lin, 2008, Nuclear localization of annexin A1 is a prognostic factor in oral squamous cell carcinoma, J. Surg. Oncol., 97, 544, 10.1002/jso.20992
Liu, 2003, Translocation of annexin I from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma, World J. Gastroenterol., 9, 645, 10.3748/wjg.v9.i4.645
Hirata, 1999, Lipocortin (Annexin) I heterotetramer binds to purine RNA and pyrimidine DNA, Biochem. Biophys. Res. Commun., 265, 200, 10.1006/bbrc.1999.1660
Hirata, 2002, DNA chain unwinding and annealing reactions of lipocortin (annexin) I heterotetramer: regulation by Ca2+ and Mg2+, Biochem. Biophys. Res. Commun., 291, 205, 10.1006/bbrc.2002.6422
Lin, 1997, The biochemical status of the DNA synthesome can distinguish between permanent and temporary cell growth arrest, Cell Growth Differ., 8, 1359
Kunkel, 1999, The high cost of living. American Association for Cancer Research Special Conference: endogenous sources of mutations, Fort Myers, Florida, USA, 11–15 November 1998, Trends Genet., 15, 93, 10.1016/S0168-9525(98)01664-3
Kunz, 2000, DNA damage-induced mutation: tolerance via translesion synthesis, Mutat. Res., 451, 169, 10.1016/S0027-5107(00)00048-8
Makridakis, 2012, Translesion DNA polymerases and cancer, Front. Genet., 3, 174, 10.3389/fgene.2012.00174
Dieckman, 2012, PCNA structure and function: insights from structures of PCNA complexes and post-translationally modified PCNA, Subcell. Biochem., 62, 281, 10.1007/978-94-007-4572-8
Ulrich, 2005, The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO, Chembiochemistry, 6, 1735, 10.1002/cbic.200500139
Hirata, 2011, Carcinogenic heavy metals, As3+ and Cr6+, increase affinity of nuclear mono-ubiquitinated annexin A1 for DNA containing 8-oxo-guanosine, and promote translesion DNA synthesis, Toxicol. Appl. Pharmacol., 252, 159, 10.1016/j.taap.2011.01.022
Maier, 2002, Arsenic co-exposure potentiates benzo[a]pyrene genotoxicity, Mutat. Res., 517, 101, 10.1016/S1383-5718(02)00057-8
Hirata, 2014, Dietary flavonoids bind to mono-ubiquitinated annexin A1 in nuclei, and inhibit chemical induced mutagenesis, Mutat Res. Fundam. Mol. Mech. Mutagen, 759, 29, 10.1016/j.mrfmmm.2013.11.002
Gerdes, 2008, Membrane traffic in the secretory pathway, Cell. Mol. Life Sci., 65, 2779, 10.1007/s00018-008-8348-z
Wallner, 1986, Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity, Nature, 320, 77, 10.1038/320077a0
Philip, 1998, Blockade of the classical pathway of protein secretion does not affect the cellular exportation of lipocortin 1, Regul. Pept., 73, 133, 10.1016/S0167-0115(97)01077-X
Christmas, 1991, Selective secretion of annexin 1, a protein without a signal sequence, by the human prostate gland, J. Biol. Chem., 266, 2499, 10.1016/S0021-9258(18)52272-9
Vong, 2007, Annexin 1 cleavage in activated neutrophils: a pivotal role for proteinase 3, J. Biol. Chem., 282, 29998, 10.1074/jbc.M702876200
Boudhraa, 2014, Characterization of pro-invasive mechanisms and N-terminal cleavage of ANXA1 in melanoma, Arch Dermatol. Res., 306, 903, 10.1007/s00403-014-1517-z
Solito, 2006, Post-translational modification plays an essential role in the translocation of annexin A1 from the cytoplasm to the cell surface, FASEB J., 20, 1498, 10.1096/fj.05-5319fje
Aderem, 1988, Stimulus-dependent myristoylation of a major substrate for protein kinase C, Nature, 332, 362, 10.1038/332362a0
Wein, 2004, Mediation of annexin 1 secretion by a probenecid-sensitive ABC-transporter in rat inflamed mucosa, Biochem. Pharmacol., 67, 1195, 10.1016/j.bcp.2003.11.015
Omer, 2006, Evidence for the role of adenosine 5′-triphosphate-binding cassette (ABC)-A1 in the externalization of annexin 1 from pituitary folliculostellate cells and ABCA1-transfected cell models, Endocrinology, 147, 3219, 10.1210/en.2006-0099
Euzger, 1999, Differential modulation of annexin I binding sites on monocytes and neutrophils, Mediators Inflamm., 8, 53, 10.1080/09629359990720
Goulding, 1996, Evidence for specific annexin I-binding proteins on human monocytes, Biochem. J., 316, 593, 10.1042/bj3160593
Sadallah, 2011, Ectosomes as modulators of inflammation and immunity, Clin. Exp. Immunol., 163, 26, 10.1111/j.1365-2249.2010.04271.x
Distler, 2005, Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases, Arthritis Rheum., 52, 3337, 10.1002/art.21350
Gasser, 2003, Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils, Exp. Cell Res., 285, 243, 10.1016/S0014-4827(03)00055-7
Dalli, 2008, Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles, Blood, 112, 2512, 10.1182/blood-2008-02-140533
Tsai, 2012, Annexin A1 mediates the anti-inflammatory effects during the granulocytic differentiation process in all-trans retinoic acid-treated acute promyelocytic leukemic cells, J. Cell Physiol., 227, 3661, 10.1002/jcp.24073
Raposo, 2013, Extracellular vesicles: exosomes, microvesicles, and friends, J. Cell Biol., 200, 373, 10.1083/jcb.201211138
Aalberts, 2012, Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans, Biol. Reprod., 86, 82, 10.1095/biolreprod.111.095760
Sakwe, 2011, Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions, Exp. Cell Res., 317, 823, 10.1016/j.yexcr.2010.12.008
Williams, 2010, A proinflammatory role for proteolytically cleaved annexin A1 in neutrophil transendothelial migration, J. Immunol., 185, 3057, 10.4049/jimmunol.1000119
Blume, 2012, Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic ‘find-me’ signal, J. Immunol., 188, 135, 10.4049/jimmunol.1004073
Woloszynek, 2012, Cathepsin G-regulated release of formyl peptide receptor agonists modulate neutrophil effector functions, J. Biol. Chem., 287, 34101, 10.1074/jbc.M112.394452
Pederzoli-Ribeil, 2010, Design and characterization of a cleavage-resistant Annexin A1 mutant to control inflammation in the microvasculature, Blood, 116, 4288, 10.1182/blood-2010-02-270520
Dalli, 2013, Proresolving and tissue-protective actions of annexin A1-based cleavage-resistant peptides are mediated by formyl peptide receptor 2/lipoxin A4 receptor, J. Immunol., 190, 6478, 10.4049/jimmunol.1203000
Fu, 2006, Ligand recognition and activation of formyl peptide receptors in neutrophils, J. Leukoc. Biol., 79, 247, 10.1189/jlb.0905498
Blume, 2009, Cell surface externalization of annexin A1 as a failsafe mechanism preventing inflammatory responses during secondary necrosis, J. Immunol., 183, 8138, 10.4049/jimmunol.0902250
Scannell, 2007, Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages, J. Immunol., 178, 4595, 10.4049/jimmunol.178.7.4595
Belvedere, 2014, Role of intracellular and extracellular annexin A1 in migration and invasion of human pancreatic carcinoma cells, BMC Cancer, 14, 961, 10.1186/1471-2407-14-961
Renshaw, 2010, Downstream gene activation of the receptor ALX by the agonist annexin A1, PLoS One, 5, 10.1371/journal.pone.0012771
Hayhoe, 2006, Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: indication of distinct receptor involvement, Blood, 107, 2123, 10.1182/blood-2005-08-3099
Liu, 2012, G protein-coupled receptor FPR1 as a pharmacologic target in inflammation and human glioblastoma, Int. Immunopharmacol., 14, 283, 10.1016/j.intimp.2012.07.015
Bizzarro, 2012, Annexin A1 induces skeletal muscle cell migration acting through formyl peptide receptors, PLoS One, 7, e48246, 10.1371/journal.pone.0048246
Cheng, 2012, Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway, Cancer, 118, 5757, 10.1002/cncr.27565
Cheng, 2014, Formyl peptide receptor 1 expression is associated with tumor progression and survival in gastric cancer, Anticancer Res., 34, 2223
Yang, 2011, Annexin 1 released by necrotic human glioblastoma cells stimulates tumor cell growth through the formyl peptide receptor 1, Am. J. Pathol., 179, 1504, 10.1016/j.ajpath.2011.05.059
D'Acquisto, 2013, Pro-inflammatory and pathogenic properties of Annexin-A1: the whole is greater than the sum of its parts, Biochem. Pharmacol., 85, 1213, 10.1016/j.bcp.2013.02.011
Yom, 2011, Clinical significance of annexin A1 expression in breast cancer, J. Breast Cancer, 14, 262, 10.4048/jbc.2011.14.4.262
Khau, 2011, Annexin-1 signals mitogen-stimulated breast tumor cell proliferation by activation of the formyl peptide receptors (FPRs) 1 and 2, FASEB J., 25, 483, 10.1096/fj.09-154096
Guenther, 2010, The bisphosphonate zoledronic acid has antimyeloma activity in vivo by inhibition of protein prenylation, Int. J. Cancer, 126, 239, 10.1002/ijc.24758
Yeganeh, 2014, Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease, Pharmacol. Ther., 143, 87, 10.1016/j.pharmthera.2014.02.007
Thurnher, 2012, Novel aspects of mevalonate pathway inhibitors as antitumor agents, Clin. Cancer Res., 18, 3524, 10.1158/1078-0432.CCR-12-0489
Milone, 2015, Proteomic analysis of zoledronic-acid resistant prostate cancer cells unveils novel pathways characterizing an invasive phenotype, Oncotarget, 6, 5324, 10.18632/oncotarget.2694
Bizzarro, 2015, Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid, Oncotarget, 6, 25076, 10.18632/oncotarget.4725
Zhou, 2005, Formylpeptide receptor FPR and the rapid growth of malignant human gliomas, J. Natl. Cancer Inst., 97, 823, 10.1093/jnci/dji142
Huang, 2010, The G-protein-coupled formylpeptide receptor FPR confers a more invasive phenotype on human glioblastoma cells, Br. J. Cancer, 102, 1052, 10.1038/sj.bjc.6605591
Cheng, 2013, FoxM1 promotes glioma cells progression by up-regulating Anxa1 expression, PLoS One, 8, e72376, 10.1371/journal.pone.0072376
Boudhraa, 2014, Annexin A1 in primary tumors promotes melanoma dissemination, Clin. Exp. Metastasis, 31, 749, 10.1007/s10585-014-9665-2
Chakravarti, 2013, Differential expression of the G-protein-coupled formyl peptide receptor in melanoma associates with aggressive phenotype, Am. J. Dermatopathol., 35, 184, 10.1097/DAD.0b013e31825b2506
Su, 2010, Increased expression of annexin A1 is correlated with K-ras mutation in colorectal cancer, Tohoku J. Exp. Med., 222, 243, 10.1620/tjem.222.243
Hoffmann, 2010, Aberrant expression of alternative DNA polymerases: a source of mutator phenotype as well as replicative stress in cancer, Semin. Cancer Biol., 20, 312, 10.1016/j.semcancer.2010.10.001
Sinha, 1998, Increased expression of annexin I and thioredoxin detected by two-dimensional gel electrophoresis of drug resistant human stomach cancer cells, J. Biochem. Biophys. Methods, 37, 105, 10.1016/S0165-022X(98)00020-7
Sheu, 2014, Overexpression of ANXA1 confers independent negative prognostic impact in rectal cancers receiving concurrent chemoradiotherapy, Tumour Biol., 35, 7755, 10.1007/s13277-014-2032-8
Zhang, 2012, Cisplatin treatment leads to changes in nuclear protein and microRNA expression, Mutat. Res., 746, 66, 10.1016/j.mrgentox.2012.03.004
Wang, 2014, Regulatory mechanisms of annexin-induced chemotherapy resistance in cisplatin resistant lung adenocarcinoma, Asian Pac. J. Cancer Prev., 15, 3191, 10.7314/APJCP.2014.15.7.3191
Gandellini, 2015, Complexity in the tumour microenvironment: Cancer associated fibroblast gene expression patterns identify both common and unique features of tumour-stroma crosstalk across cancer types, Semin. Cancer Biol., 10.1016/j.semcancer.2015.08.008
Liu, 2014, Formyl peptide receptor suppresses melanoma development and promotes NK cell migration, Inflammation, 37, 984, 10.1007/s10753-014-9819-z
Perretti, 2009, Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics, Br. J. Pharmacol., 158, 936, 10.1111/j.1476-5381.2009.00483.x
Yi, 2009, Impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1-null mice, Proc. Natl. Acad. Sci. U.S.A., 106, 17886, 10.1073/pnas.0901324106
Geary, 2014, CAF-secreted Annexin A1 induces prostate cancer cells to gain stem cell-like features, Mol. Cancer Res., 12, 607, 10.1158/1541-7786.MCR-13-0469
Echarri, 2015, Caveolae - mechanosensitive membrane invaginations linked to actin filaments, J. Cell Sci., 128, 2747, 10.1242/jcs.153940
Schnitzer, 1995, Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases, J. Biol. Chem., 270, 14399, 10.1074/jbc.270.24.14399
Oh, 2007, Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung, Nat. Biotechnol., 25, 327, 10.1038/nbt1292
Oh, 2014, In vivo proteomic imaging analysis of caveolae reveals pumping system to penetrate solid tumors, Nat. Med., 20, 1062, 10.1038/nm.3623