Angle-based homing from a reference image set using the 1D trifocal tensor

Autonomous Robots - Tập 34 - Trang 73-91 - 2013
M. Aranda1, G. López-Nicolás1, C. Sagüés1
1Instituto de Investigación en Ingeniería de Aragón, Universidad de Zaragoza, Zaragoza, Spain

Tóm tắt

This paper presents a visual homing method for a robot moving on the ground plane. The approach employs a set of omnidirectional images acquired previously at different locations (including the goal position) in the environment, and the current image taken by the robot. We present as contribution a method to obtain the relative angles between all these locations, using the computation of the 1D trifocal tensor between views and an indirect angle estimation procedure. The tensor is particularly well suited for planar motion and provides important robustness properties to our technique. Another contribution of our paper is a new control law that uses the available angles, with no range information involved, to drive the robot to the goal. Therefore, our method takes advantage of the strengths of omnidirectional vision, which provides a wide field of view and very precise angular information. We present a formal proof of the stability of the proposed control law. The performance of our approach is illustrated through simulations and different sets of experiments with real images.

Tài liệu tham khảo

Aranda, M., López-Nicolás, G., & Sagüés, C. (2010). Omnidirectional visual homing using the 1D trifocal tensor. In IEEE international conference on robotics and automation (pp. 2444–2450). Argyros, A. A., Bekris, K. E., Orphanoudakis, S. C., & Kavraki, L. E. (2005). Robot homing by exploiting panoramic vision. Autonomous Robots, 19(1), 7–25. Åström, K., & Oskarsson, M. (2000). Solutions and ambiguities of the structure and motion problem for 1D retinal vision. Journal of Mathematical Imaging and Vision, 12(2), 121–135. Basri, R., Rivlin, E., & Shimshoni, I. (1999). Visual homing: Surfing on the epipoles. International Journal of Computer Vision, 33(2), 117–137. Becerra, H., Lopez-Nicolas, G., & Sagues, C. (2010). Omnidirectional visual control of mobile robots based on the 1D trifocal tensor. Robotics and Autonomous Systems, 58(6), 796–808. Booij, O., Terwijn, B., Zivkovic, Z., & Kröse, B. (2007). Navigation using an appearance based topological map. In IEEE international conference on robotics and automation (pp. 3927–3932). Booij, O., Zivkovic, Z., & Kröse, B. (2006). Sparse appearance based modeling for robot localization. In IEEE international conference on intelligent robots and systems (pp. 1510–1515). Chaumette, F., & Hutchinson, S. (2006). Visual servo control, part I: Basic approaches. IEEE Robotics and Automation Magazine, 13(4), 82–90. Chen, J., Dixon, W., Dawson, M., & McIntyre, M. (2006). Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Transactions on Robotics, 22(2), 407–416. Cherubini, A., & Chaumette, F. (2011). Visual navigation with obstacle avoidance. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1593–1598). Chesi, G., & Hashimoto, K. (2004). A simple technique for improving camera displacement estimation in eye-in-hand visual servoing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1239–1242. Chesi, G., & Hashimoto, K. (Eds.). (2010). Visual servoing via advanced numerical methods. In Lecture notes in control and information sciences (Vol. 401). New York: Springer. Churchill, D., & Vardy, A. (2008). Homing in scale space. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1307–1312). Courbon, J., Mezouar, Y., & Martinet, P. (2008). Indoor navigation of a non-holonomic mobile robot using a visual memory. Autonomous Robots, 25(3), 253–266. Dellaert, F., & Stroupe, A. W. (2002). Linear 2D localization and mapping for single and multiple robot scenarios. In IEEE international conference on robotics and automation (pp. 688–694). DeSouza, G. N., & Kak, A. C. (2002). Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 237–267. Franz, M. O., Schölkopf, B., Georg, P., Mallot, H. A., & Bülthoff, H. H. (1998). Learning view graphs for robot navigation. Autonomous Robots, 5(1), 111–125. Goedemé, T., Nuttin, M., Tuytelaars, T., & Van Gool, L. (2007). Omnidirectional vision based topological navigation. International Journal of Computer Vision, 74(3), 219–236. Guerrero, J. J., Murillo, A. C., & Sagüés, C. (2008). Localization and matching using the planar trifocal tensor with bearing-only data. IEEE Transactions on Robotics, 24(2), 494–501. Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press. Hong, J., Tan, X., Pinette, B., Weiss, R., & Riseman, E. M. (1992). Image-based homing. Control Systems Magazine, IEEE, 12(1), 38–45. Khalil, H. K. (2001). Nonlinear systems (3rd ed.). New York: Prentice Hall. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., & Wehner, R. (2000). A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, 30(1–2), 39–64. Lim, J., & Barnes, N. (2009). Robust visual homing with landmark angles. In Proceedings of robotics: Science and systems, Seattle. López-Nicolás, G., Guerrero, J. J., & Sagüés, C. (2010a). Multiple homographies with omnidirectional vision for robot homing. Robotics and Autonomous Systems, 58(6), 773–783. López-Nicolás, G., Guerrero, J. J., & Sagüés, C. (2010b). Visual control through the trifocal tensor for nonholonomic robots. Robotics and Autonomous Systems, 58(2), 216–226. López-Nicolás, G., & Sagüés, C. (2011). Vision-based exponential stabilization of mobile robots. Autonomous Robots, 30(3), 293–306. López-Nicolás, G., Sagüés, C., Guerrero, J., Kragic, D., & Jensfelt, P. (2008). Switching visual control based on epipoles for mobile robots. Robotics and Autonomous Systems, 56(7), 592–603. Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. Möller, R., Vardy, A., Kreft, S., & Ruwisch, S. (2007). Visual homing in environments with anisotropic landmark distribution. Autonomous Robots, 23(3), 231–245. Quan, L. (2001). Two-way ambiguity in 2D projective reconstruction from three uncalibrated 1D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 212–216. Shademan, A., & Jägersand, M. (2010). Three-view uncalibrated visual servoing. In IEEE international conference on intelligent robots and systems (pp. 6234–6239). Shashua, A., & Werman, M. (1995). Trilinearity of three perspective views and its associated tensor. In International conference on computer vision (pp. 920–925). Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control. New York: Prentice Hall. Stürzl, W., & Mallot, H. A. (2006). Efficient visual homing based on Fourier transformed panoramic images. Robotics and Autonomous Systems, 54(4), 300–313. Weber, K., Venkatesh, S., & Srinivasany, M. V. (1998). Insect-inspired robotic homing. Adaptive Behavior, 7(1), 65–97. Zivkovic, Z., Bakker, B., & Kröse, B. (2006). Hierarchical map building and planning based on graph partitioning. In IEEE international conference on robotics and automation (pp. 803–809). Zivkovic, Z., Booij, O., & Krose, B. (2007). From images to rooms. Robotics and Autonomous Systems, 55(5), 411–418.