Angiogenesis in health and disease
Tóm tắt
Từ khóa
Tài liệu tham khảo
Luttun, A., Carmeliet, G. & Carmeliet, P. Vascular progenitors: from biology to treatment. Trends Cardiovasc. Med. 12, 88–96 (2002).
Rafii, S., Lyden, D., Benezra, R., Hattori, K. & Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer 2, 826–835 (2002).
Asahara, T. & Isner, J.M. Endothelial progenitor cells for vascular regeneration. J. Hematother. Stem Cell Res. 11, 171–178 (2002).
Mikkola, H.K. & Orkin, S.H. The search for the hemangioblast. J. Hematother. Stem Cell Res. 11, 9–17 (2002).
Reyes, M. et al. Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest. 109, 337–346 (2002).
Rehman, J., Li, J., Orschell, C.M. & March, K.L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).
Takakura, N. et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199–209 (2000).
Grant, M.B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. 8, 607–612 (2002).
Gerber, H.P. et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954–958 (2002).
Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).
Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).
Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831–840 (2002).
Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 9, 702–712 (2003).
Lawson, N.D. et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683 (2001).
Zhong, T.P., Childs, S., Leu, J.P. & Fishman, M.C. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220 (2001).
Lawson, N.D., Vogel, A.M. & Weinstein, B.M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136 (2002).
Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336 (2002).
Visconti, R.P., Richardson, C.D. & Sato, T.N. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc. Natl. Acad. Sci. USA 99, 8219–8224 (2002).
Kalimo, H., Ruchoux, M.M., Viitanen, M. & Kalaria, R.N. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 12, 371–384 (2002).
Mukouyama, Y.S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D.J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002).
Suri, C. et al. Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468–471 (1998).
LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).
Sood, A.K., Fletcher, M.S. & Hendrix, M.J. The embryonic-like properties of aggressive human tumor cells. J. Soc. Gynecol. Investig. 9, 2–9 (2002).
Wang, H.U., Chen, Z.F. & Anderson, D.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).
Gerety, S.S., Wang, H.U., Chen, Z.F. & Anderson, D.J. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol. Cell 4, 403–414 (1999).
Zhang, X.Q. et al. Stromal cells expressing ephrin-B2 promote the growth and sprouting of ephrin-B2(+) endothelial cells. Blood 98, 1028–1037 (2001).
Gale, N.W. et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol. 230, 151–160 (2001).
Shin, D. et al. Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev. Biol. 230, 139–150 (2001).
Stalmans, I. et al. VEGF: A modifier of the del22q11 (DiGeorge) syndrome? Nat. Med. 9, 173–182 (2003).
Loughna, S. & Sato, T.N. A combinatorial role of angiopoietin-1 and orphan receptor TIE1 pathways in establishing vascular polarity during angiogenesis. Mol. Cell 7, 233–239 (2001).
Pugh, C.W. & Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9, 677–684 (2003).
Ferrara, N., Gerber, H.-P., LeCouter, J. & Lin, R. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).
Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).
Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001).
Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7, 575–583 (2001).
Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999).
Corada, M. et al. A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100, 905–911 (2002).
Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 6, 460–463 (2000).
Simon, A.M. & McWhorter, A.R. Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev. Biol. 251, 206–220 (2002).
Hangai, M. et al. Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am. J. Pathol. 161, 1429–1437 (2002).
Hood, J.D. & Cheresh, D.A. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91–100 (2002).
Jackson, C. Matrix metalloproteinases and angiogenesis. Curr. Opin. Nephrol. Hypertens. 11, 295–299 (2002).
Luttun, A., Dewerchin, M., Collen, D. & Carmeliet, P. The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: insights from genetic studies. Curr. Atheroscler. Rep. 2, 407–416 (2000).
Qi, J.H. et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat. Med. 9, 407–415 (2003).
Blasi, F. & Carmeliet, P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 3, 932–943 (2002).
Bajou, K. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4, 923–928 (1998).
Hellstrom, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol. 153, 543–553 (2001).
Abramsson, A. et al. Analysis of mural cell recruitment to tumor vessels. Circulation 105, 112–117 (2002).
Dinehart, S.M., Kincannon, J. & Geronemus, R. Hemangiomas: evaluation and treatment. Dermatol. Surg. 27, 475–485 (2001).
Richardson, T.P., Peters, M.C., Ennett, A.B. & Mooney, D.J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19, 1029–1034 (2001).
Cao, R. et al. Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-αα and -αβ receptors. FASEB J. 16, 1575–1583 (2002).
Takagi, H. et al. Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest. Ophthal. Mol. Vis. Sci. 44, 393–402 (2003).
Shim, W.S. et al. Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp. Cell Res. 279, 299–309 (2002).
Hattori, K. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193, 1005–1014 (2001).
Ahmad, S.A. et al. The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Res. 61, 1255–1259 (2001).
Carlson, T.R., Feng, Y., Maisonpierre, P.C., Mrksich, M. & Morla, A.O. Direct cell adhesion to the angiopoietins mediated by integrins. J. Biol. Chem. 276, 26516–26525 (2001).
Gale, N.W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell 3, 411–23 (2002).
Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).
Hackett, S.F., Wiegand, S., Yancopoulos, G. & Campochiaro, P.A. Angiopoietin-2 plays an important role in retinal angiogenesis. J. Cell. Physiol. 192, 182–187 (2002).
Vikkula, M. et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87, 1181–1190 (1996).
van den Driesche, S., Mummery, C.L. & Westermann, C.J. Hereditary hemorrhagic telangiectasia: an update on transforming growth factor β signaling in vasculogenesis and angiogenesis. Cardiovasc. Res. 58, 20–31 (2003).
Lamouille, S., Mallet, C., Feige, J.J. & Bailly, S. Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100, 4495–4501 (2002).
Goumans, M.J. et al. Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J. 21, 1743–1753 (2002).
Srinivasan, S. et al. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum. Mol. Genet. 12, 473–482 (2003).
Humbert, M. & Trembath, R.C. Genetics of pulmonary hypertension: from bench to bedside. Eur. Respir. J. 20, 741–749 (2002).
Du, L. et al. Signaling molecules in nonfamilial pulmonary hypertension. N. Engl. J. Med. 348, 500–509 (2003).
Voelkel, N.F. et al. Janus face of vascular endothelial growth factor: the obligatory survival factor for lung vascular endothelium controls precapillary artery remodeling in severe pulmonary hypertension. Crit. Care Med. 30, S251–S256 (2002).
Yeager, M.E., Halley, G.R., Golpon, H.A., Voelkel, N.F. & Tuder, R.M. Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ. Res. 88, E2–E11 (2001).
Helisch, A. & Schaper, W. Arteriogenesis: the development and growth of collateral arteries. Microcirculation 10, 83–97 (2003).
Kamihata, H. et al. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler. Thromb. Vasc. Biol. 22, 1804–1810 (2002).
Heil, M. et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am. J. Physiol. Heart Circ. Physiol. 283, H2411–H2419 (2002).
van Royen, N. et al. Exogenous application of transforming growth factor β1 stimulates arteriogenesis in the peripheral circulation. FASEB J. 16, 432–434 (2002).
Buschmann, I.R. et al. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 159, 343–356 (2001).
Voskuil, M. et al. Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am. J. Physiol. Heart Circ. Physiol. 284, H1422–H1428 (2003).
Hoefer, I.E. et al. Direct evidence for tumor necrosis factor-α signaling in arteriogenesis. Circulation 105, 1639–1641 (2002).
Pipp, F. et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ. Res. 92, 378–385 (2003).
Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. (2003).
Vacca, A. et al. Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis. Int. J. Clin. Lab. Res. 28, 55–68 (1998).
Li, X.F. et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J. Clin. Endocrinol. Metab. 86, 1823–1834 (2001).
Sica, A., Saccani, A. & Mantovani, A. Tumor-associated macrophages: a molecular perspective. Int. Immunopharmacol. 2, 1045–1054 (2002).
Coussens, L.M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).
Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).
Schmeisser, A. & Strasser, R.H. Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. J. Hematother. Stem Cell Res. 11, 69–79 (2002).
Nykanen, A.I. et al. Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation 107, 1308–1314 (2003).
Melder, R.J. et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med. 2, 992–997 (1996).
Carbone, J.E. & Ohm, D.P. Immune dysfunction in cancer patients. Oncology (Huntington) 16, 11–18 (2002).
Dermond, O. & Ruegg, C. Inhibition of tumor angiogenesis by non-steroidal anti-inflammatory drugs: emerging mechanisms and therapeutic perspectives. Drug Resist. Update 4, 314–321 (2001).
Bernardini, G. et al. Analysis of the role of chemokines in angiogenesis. J. Immunol. Meth. 273, 83–101 (2003).
Trikha, M. & Nakada, M.T. Platelets and cancer: implications for antiangiogenic therapy. Semin. Thromb. Hemost. 28, 39–44 (2002).
Fernandez, P.M. & Rickles, F.R. Tissue factor and angiogenesis in cancer. Curr. Opin. Hematol. 9, 401–406 (2002).
English, D., Brindley, D.N., Spiegel, S. & Garcia, J.G. Lipid mediators of angiogenesis and the signalling pathways they initiate. Biochim. Biophys. Acta 1582, 228–239 (2002).
Benjamin, L.E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 159–165 (1999).
Dor, Y. et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 21, 1939–1947 (2002).
Boudier, H.A. Arteriolar and capillary remodelling in hypertension. Drugs 58 (suppl. 1), 37–40 (1999).
Benjamin, L.E., Hemo, I. & Keshet, E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125, 1591–1598 (1998).
Vailhe, B. & Feige, J.J. Thrombospondins as anti-angiogenic therapeutic agents. Curr. Pharm. Des. 9, 583–588 (2003).
Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).
Schonfeld, C.L. Hyalocytes inhibit retinal pigment epithelium cell proliferation in vitro. Ger. J. Ophthalmol. 5, 224–228 (1996).
Makino, Y., Kanopka, A., Wilson, W.J., Tanaka, H. & Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J. Biol. Chem. 277, 32405–32408 (2002).
D'Amore, P.A. & Ng, Y.S. Tales of the cryptic: unveiling more angiogenesis inhibitors. Trends Mol. Med. 8, 313–315 (2002).
Meyer, M. et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18, 363–374 (1999).
Harada, K., Lu, S., Chisholm, D.M., Syrjanen, S. & Schor, A.M. Angiogenesis and vasodilation in skin warts. Association with HPV infection. Anticancer Res. 20, 4519–4523 (2000).
Barillari, G. & Ensoli, B. Angiogenic effects of extracellular human immunodeficiency virus type 1 Tat protein and its role in the pathogenesis of AIDS-associated Kaposi's sarcoma. Clin. Microbiol. Rev. 15, 310–326 (2002).
Rupnick, M.A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl. Acad. Sci. USA 99, 10730–10735 (2002).
Hackett, S.F. et al. Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J. Cell Physiol. 184, 275–284 (2000).
Krupinski, J., Kaluza, J., Kumar, P., Kumar, S. & Wang, J.M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25, 1794–1798 (1994).
Van Belle, E. et al. Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. Circulation 96, 2667–2674 (1997).
Waltenberger, J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc. Res. 49, 554–560 (2001).
Rivard, A. et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am. J. Pathol. 154, 355–363 (1999).
Gennaro, G., Menard, C., Michaud, S.E. & Rivard, A. Age-dependent impairment of reendothelialization after arterial injury: role of vascular endothelial growth factor. Circulation 107, 230–233 (2003).
Jenkinson, L., Bardhan, K.D., Atherton, J. & Kalia, N. Helicobacter pylori prevents proliferative stage of angiogenesis in vitro: role of cytokines. Dig. Dis. Sci. 47, 1857–1862 (2002).
Yano, K., Brown, L.F. & Detmar, M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Invest. 107, 409–417 (2001).
Chang, E., Yang, J., Nagavarapu, U. & Herron, G.S. Aging and survival of cutaneous microvasculature. J. Invest. Dermatol. 118, 752–758 (2002).
Maynard, S.E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).
Hewett, P. et al. Down-regulation of angiopoietin-1 expression in menorrhagia. Am. J. Pathol. 160, 773–780 (2002).
Compernolle, V. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat. Med. 8, 702–710 (2002).
Kasahara, Y. et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest. 106, 1311–1319 (2000).
Kang, D.H. et al. Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am. J. Kidney Dis. 37, 601–611 (2001).
Martinez, P., Esbrit, P., Rodrigo, A., Alvarez-Arroyo, M.V. & Martinez, M.E. Age-related changes in parathyroid hormone-related protein and vascular endothelial growth factor in human osteoblastic cells. Osteoporos. Int. 13, 874–881 (2002).