Sàng lọc dị bội trong bối cảnh các phát hiện sinh học - y học gần đây, tình hình pháp lý tại khu vực D-A-CH và cân nhắc đến các khía cạnh tâm lý của bệnh nhân mong muốn có con

Maximilian Murtinger1, Maximilian Schuff1, Barbara Wirleitner1, Adriane Damko1, Deborah Staub2, Pierre Vanderzwalmen1,3, Dietmar Spitzer4, Astrid Stecher1
1NEXTCLINIC IVF Zentren Prof. Zech, Bregenz, Österreich
2St. Gallen, Schweiz
3Centre Hospitalier Inter Régional Edith Cavell (CHIREC), Bruxelles, Belgien
4IVF Zentren Prof. Zech, Salzburg, Österreich

Tóm tắt

Sàng lọc di truyền trước khi cấy ghép (PGS)/Kiểm tra di truyền trước khi cấy ghép cho dị bội (PGT-A) là một phần của chẩn đoán trước khi cấy ghép (PID). Thuật ngữ này bao gồm nhiều phương pháp được áp dụng để nắm bắt cấu trúc nhiễm sắc thể của một phôi trước khi chuyển vào tử cung. Mục đích không phải là ngăn chặn sự di truyền các bệnh di truyền (mono-gen) mà chỉ đơn thuần là loại trừ các dị bội. Việc áp dụng PGS được dự đoán sẽ làm tăng khả năng cấy ghép cũng như tỷ lệ sinh sống và giảm tỷ lệ sẩy thai, do các phôi euploid được lựa chọn cho việc chuyển cấy, theo giả thuyết lâm sàng. Trong những năm gần đây, kỹ thuật này không chỉ được phát triển kỹ thuật một cách chóng mặt mà còn ngày càng được ưa chuộng trên toàn cầu. Tuy nhiên, một điều thường không được chú ý là vẫn thiếu bằng chứng lâm sàng chứng minh cho "lợi ích" được giả thuyết của PGS. Ngay cả các kỹ thuật tiên tiến nhất như "giải trình tự thế hệ tiếp theo" (NGS) cũng chưa thể thay đổi điều đó. Ngược lại, các nền tảng phân tích nhạy cảm cao này đã dẫn đến những nhận thức mới về trạng thái nhiễm sắc thể của phôi trước khi cấy ghép và cũng tạo ra một vấn đề cơ bản có thể đặt dấu hỏi về PGS nói chung – đó là thực tế rằng một phần không nhỏ của các phôi người không đồng nhất euploid hay aneuploid mà tồn tại dưới dạng một mô hình nhiễm sắc thể (CM) với các bất thường số lượng và/hoặc cấu trúc. Bài viết tổng quan này tóm tắt tài liệu hiện tại và xem xét những vấn đề cốt lõi của PGS từ góc độ sinh học y học, pháp lý và đạo đức.

Từ khóa

#sàng lọc dị bội #PGD #PGT-A #phôi #bất thường nhiễm sắc thể

Tài liệu tham khảo

De Rycke M, Goossens V, Kokkali G et al (2017) ESHRE PGD Consortium data collection XIV–XV: cycles from January 2011 to December 2012 with regnancy follow-up to October 2013. Hum Reprod 32:1974–1994 Homer HA (2019) Preimplantation genetic testing for aneuploidy (PGT-A): the biology, the technology and the clinical outcomes. Aust N Z J Obstet Gynaecol 59:317–324 Bundesministerium der Justiz und für Verbraucherschutz (2011) Gesetz zur Regelung der Präimplantationsdiagnostik (Präimplantationsdiagnostikgesetz-PräimpG). https://www.bundesgerichtshof.de/SharedDocs/Downloads/DE/Bibliothek/Gesetzesmaterialien/17_wp/PID/bgbl.pdf?__blob=publicationFile&v=1. Zugegriffen: 25. Jan. 2020 (Bundesgesetzblatt Jahrgang 2011 Teil I Nr. 58) Rechtsinformationssystem des Bundes (2019) Bundesrecht konsolidiert: Gesamte Rechtsvorschrift für Fortpflanzungsmedizingesetz, Fassung vom 18.12.2019. https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10003046. Zugegriffen: 25. Jan. 2020 Schweizerische Eidgenossenschaft (1999) Bundesverfassung der Schweizerischen Eidgenossenschaft vom 18. April 1999. https://www.admin.ch/opc/de/classified-compilation/19995395/index.html#fn-#a119-1. Zugegriffen: 25. Jan. 2020 (Stand am 1. Januar 2020) Kern R (2019) Statistik über die Anwendung medizinisch unterstützter Fortpflanzung gemäß § 21 FMedG. Jahresbericht 2018. https://jasmin.goeg.at/1033/1/Jahresbericht%202018%20%C2%A7%2021%20FMedG.pdf. Zugegriffen: 5. Febr. 2020 Suzumori N, Sugiura-Ogasawara M (2010) Genetic factors as a cause of miscarriage. Curr Med Chem 17:3431–3437 Sullivan AE, Silver RM, LaCoursiere DY, Porter TF, Branch DW (2004) Recurrent fetal aneuploidy and recurrent miscarriage. Obstet Gynecol 104:784–788 Staub D (2019) Verfassungsrechtlicher Rahmen der Präimplantationsdiagnostik-Verfahren (PID-Verfahren), 1. Aufl. Dike, Zürich Scott RT Jr, Galliano D (2016) The challenge of embryonic mosaicism in preimplantation genetic screening. Fertil Steril 105:1150–1152 Capalbo A, Wright G, Elliott T et al (2013) FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage. Hum Reprod 28:2298–2307 Huang J, Yan L, Lu S, Zhao N, Qiao J (2017) Re-analysis of aneuploidy blastocysts with an inner cell mass and different regional trophectoderm cells. J Assist Reprod Genet 34:487–493 Victor AR, Griffin DK, Brake AJ et al (2019) Assessment of aneuploidy concordance between clinical trophectoderm biopsy and blastocyst. Hum Reprod 34:181–192 Bolton H, Graham SJ, Van der Aa N et al (2016) Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun 7:11165 Taylor TH, Stankewicz T, Katz SL et al (2019) Preliminary assessment of aneuploidy rates between the polar, mid and mural trophectoderm. Zygote 18:1–4 Orvieto R, Gleicher N (2016) Should preimplantation genetic screening (PGS) be implemented to routine IVF practice? J Assist Reprod Genet 33:1445–1448 Gleicher N, Metzger J, Croft G et al (2017) A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod Biol Endocrinol 15:33 Dokras A, Sargent IL, Ross C, Gardner RL, Barlow DH (1990) Trophectoderm biopsy in human blastocysts. Hum Reprod 5:821–825 Zhang S, Luo K, Cheng D et al (2016) Number of biopsied trophectoderm cells is likely to affect the implantation potential of blastocysts with poor trophectoderm quality. Fertil Steril 105:1222–1227 Guzman L, Nuñez D, López R et al (2019) The number of biopsied trophectoderm cells may affect pregnancy outcomes. J Assist Reprod Genet 36:145–151 Zhang WY, von Versen-Höynck F, Kapphahn KI et al (2019) Maternal and neonatal outcomes associated with trophectoderm biopsy. Fertil Steril 112:283–290.e2 Zacchini F, Arena R, Abramik A, Ptak GE (2017) Embryo biopsy and development: the known and the unknown. Reproduction 154:R143–R148 Schuff M, Wirleitner B, Okhowat J et al (2019) PGT-A: when it is better not to know. Reprod Biomed Online 39(S1):E38 Vera-Rodriguez M, Rubio C (2017) Assessing the true incidence of mosaicism in preimplantation embryos. Fertil Steril 107:1107–1112 Katz-Jaffe M, Parks J, McReynolds S, Henry L, Schoolcraft WB (2018) Chromosomal mosaicism is impacted by compromised embryo culture conditions. Fertil Steril 110:e431 Tarozzi N, Nadalini M, Lagalla C et al (2019) Male factor infertility impacts the rate of mosaic blastocysts in cycles of preimplantation genetic testing for aneuploidy. J Assist Reprod Genet 36:2047–2055 Kalousek DK, Dill FJ (1983) Chromosomal mosaicism confined to the placenta in human conceptions. Science 221:665–667 Abdelgadir D, Nowaczyk MJ, Li C (2013) Trisomy 22 mosaicism and normal developmental outcome: report of two patients and review of the literature. Am J Med Genet A 161A:1126–1131 McCoy RC (2017) Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet 33:448–463 McCoy RC, Newnham LJ, Ottolini CS et al (2018) Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos. Hum Mol Genet 27:2573–2585 Santos MA, Teklenburg G, Macklon NS et al (2010) The fate of the mosaic embryo: chromosomal constitution and development of Day 4, 5 and 8 human embryos. Hum Reprod 25:1916–1926 McCoy RC, Demko ZP, Ryan A et al (2015) Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet 11(10):e1005601 Kermi C, Aze A, Maiorano D (2019) Preserving genome integrity during the early embryonic DNA replication cycles. Genes (Basel). https://doi.org/10.3390/genes10050398 Yuan K, Seller CA, Shermoen AW, O’Farrell PH (2016) Timing the drosophila mid-blastula transition: a cell cycle-centered view. Trends Genet 32:496–507 Palmer N, Kaldis P (2016) Regulation of the embryonic cell cycle during mammalian preimplantation development. Curr Top Dev Biol 120:1–53 Wong CC, Loewke KE, Bossert NL et al (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 28:1115–1121 Goddijn M, Leschot NJ (2000) Genetic aspects of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol 14:855–865 Russo R, Sessa AM, Fumo R, Gaeta S (2016) Chromosomal anomalies in early spontaneous abortions: interphase FISH analysis on 855 FFPE first trimester abortions. Prenat Diagn 36:186–191 Kalousek DK, Vekemans M (1996) Confined placental mosaicism. J Med Genet 33:529–533 (Review) Disorders of Chromosome 16 Foundation (DOC16) (2011) A brief (and basic) overview of chromosome 16 disorders. http://www.trisomy16.org/about/what_are_doc16.html. Zugegriffen: 17. März 2020 Preimplantation Genetic Diagnosis International Society (PGDIS) (2016) PGDIS position statement on chromosome mosaicism and preimplantation aneuploidy testing at the blastocyst stage. https://www.pgdis.org/docs/newsletter_071816.html. Zugegriffen: 25. Jan. 2020 (PGDIS Newsletter, July 19, 2016) IVF Worldwide (2016) Controversies in preconception, preimplantation and prenatal genetic diagnosis (COGEN). COGEN position statement on chromosomal mosaicism detected in preimplantation blastocyst biopsies. http://www.ivf-worldwide.com/cogen/general/cogen-statement.html. Zugegriffen: 25. Jan. 2020 Grati FR, Gallazzi G, Branca L, Maggi F, Simoni G, Yaron Y (2018) An evidence-based scoring system for prioritizing mosaic aneuploid embryos following preimplantation genetic screening. Reprod Biomed Online 36:442–449 Tartaglia NR, Howell S, Sutherland A, Wilson R, Wilson L (2010) A review of trisomy X (47,XXX). Orphanet J Rare Dis 5:8 Bojesen A, Juul S, Gravholt CH (2003) Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab 88:622–626 Gleicher N, Kushnir VA, Barad DH (2018) How PGS/PGT‑A laboratories succeeded in losing all credibility. Reprod Biomed Online 37:242–245 Braude P (2018) The emperor still looks naked. Reprod Biomed Online 37:133–135 Murtinger M, Wirleitner B, Schuff M (2018) Scoring of mosaic embryos after preimplantation genetic testing: a rollercoaster ride between fear, hope and embryo wastage. Reprod Biomed Online 37:120–121 Cram DS, Leigh D, Handyside A et al (2019) PGDIS position statement on the transfer of mosaic embryos 2019. Reprod Biomed Online 1:e1–e4 Greco E, Minasi MG, Fiorentino F (2015) Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med 373:2089–2090 Lledó B, Morales R, Ortiz JA et al (2017) Implantation potential of mosaic embryos. Syst Biol Reprod Med 63:206–208 Fragouli E, Alfarawati S, Spath K (2017) Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum Genet 136:805–819 Spinella F, Fiorentino F, Biricik A, Bono S, Ruberti A, Cotroneo E, Baldi M, Cursio E, Minasi MG, Greco E (2018) Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil Steril 109:77–83 Victor AR, Tyndall JC, Brake AJ (2019) One hundred mosaic embryo transferred prospectively in a single clinic: exploring when and why they result in pregnancies. Fertil Steril 111:280–293 Munné S, Blazek J, Large M (2017) Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing blastocysts detected with the use of high-resolution next generation sequencing. Fertil Steril 108:62–71 Zhang L, Wei D, Zhu Y (2019) Rates of live birth after mosaic embryo transfer compared with euploid embryos. J Assist Reprod Genet 36:165–172 Zore T, Kroener LL, Wang C (2019) Transfer of embryos with segmental mosaicism is associated with a significant reduction in live-birth rate. Fertil Steril 111:69–76 Munné S, Grifo J, Wells D (2016) Mosaicism: “survival of the fittest” versus “no embryo left behind”. Fertil Steril 105:1146–1149 Fragouli E, Munné S, Wells D (2019) The cytogenetic constitution of human blastocysts: insights from comprehensive chromosome screening strategies. Hum Reprod Update 25:15–33 Fragouli E, Alfarawati S, Daphnis D et al (2011) Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod 26:480–490 Nakhuda G, Jing C, Butler R et al (2018) Frequencies of chromosome-specific mosaicisms in trophoectoderm biopsies detected by next-generation sequencing. Fertil Steril 109:857–865 Northrop LE, Treff NR, Levy B, Scott RT Jr. (2010) SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod 16(8):590–600 Munné S, Kaplan B, Frattarelli JL et al (2019) Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil Steril 112:1071–1079.e7 WHO (1946) WHO-Verfassung: Verfassung der Weltgesundheitsorganisation vom 22. Juli 1946 (SR 0.810.1). https://www.admin.ch/opc/de/classified-compilation/19460131/201405080000/0.810.1.pdf. Zugegriffen: 25. Jan. 2020 Igl G, Welti F (2018) Gesundheitsrecht, Eine systematische Einführung, 3. Aufl. Vahlen, München, S 1 Gächter T, Rütsche B (2018) Gesundheitsrecht, 4. Aufl. Helbing Lichtenhahn, Basel, S 5 Losch B, Radau W (2000) „Wrongful birth“ und „wrongful life“. Probleme der rechtlichen Bewältigung ärztlicher Pflichtverletzung bei der menschlichen Reproduktion. Ethik Med 12:30–43 Hälg T, Tanyeli T, Meier J (2016) Neues Leben – und am Anfang ist die Haftung? In: Ohne jegliche Haftung – Festschrift für Willi Fischer. Beiträge zum schweizerischen Haftpflicht – und Schuldrecht, S 199–218 Mastenbroek S, Twisk M, van Echten-Arends J et al (2007) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357:9–17 Practice Committees of the Society for Assisted Reproductive Technologies and American Society for Reproductive Medicine (2008) Preimplantation genetic testing: a practice committee opinion. Fertil Steril 90:S136–S143 Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR (2013) Cleavage stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril 100:624–630 Munne S, Kaplan B, Frattarelli JL, Gysler M et al (2017) Global multicenter randomized controlled trial comparing single embryo transfer with embryo selected by preimplantation genetic screening using next-generation sequencing versus morphologic assessment. Fertil Steril 108(3, Supplement):e19 Focus on Reproduction (2019) Eshre aneuploidy testing: large RCT finds no improvement in pregnancy rate from PGT‑A. https://www.focusonreproduction.eu/article/News-in-Reproduction-Aneuploidy-screening. Zugegriffen: 25. Jan. 2020 Verpoest W, Staessen C, Bossuyt PM et al (2018) Preimplantation genetic testing for aneuploidy by microarray analysis of polar bodies in advanced maternal age: a randomized clinical trial. Hum Reprod 33:1767–1776 Leaver M, Wells D (2020) Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update 26:16–42 Brezina PR, Ke RW, Kutteh WH (2013) Preimplantation genetic screening: a practical guide. Clin Med Insights Reprod Health 7:37–42 CooperGenomics (2020) PGT-A: a genetic test designed to increase the chance of IVF success. https://www.coopergenomics.com/products/pgt-a/providers/. Zugegriffen: 25. Jan. 2020 Grootendorst DC, Jager KJ, Zoccali C, Dekker FW (2009) Screening: why, when, and how. Kidney Int 76(7):694–699 Wilson JMG, Junger G (1968) Principles and practice of screening for disease. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/37650/WHO_PHP_34.pdf?sequence=17. Zugegriffen: 25. Jan. 2020 Bundesausschuss der Ärzte und Krankenkassen (2011) Richtlinien des Bundesausschusses der Ärzte und Krankenkassen über die Früherkennung von Krankheiten bei Kindern bis zur Vollendung des 6. Lebensjahres („Kinder-Richtlinien“). https://www.screening-dgns.de/richtlinien.php. Zugegriffen: 25. Jan. 2020 (zuletzt geändert am 16. Dezember 2010 veröffentlicht im Bundesanzeiger 2011; Nr. 40: S. 1013, in Kraft getreten am 12. März 2011)