Biểu hiện của thụ thể androgen dự đoán sự sống sót của bệnh nhân ung thư vú: vai trò của các sự kiện di truyền và biểu hiện gen

BMC Cancer - 2012
Kate M. Peters1, Stacey L. Edwards1, Shalima S. Nair2, Juliet D. French1, Peter J. Bailey1, Kathryn Salkield1, Sandra Stein3, Sarah Wagner3, Glenn Francis3, Susan J. Clark2, Melissa A. Brown1
1School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
2Epigenetics Group, Garvan Institute of Medical Research, Sydney, Australia
3Department of Pathology, Princess Alexandra Hospital, Queensland Woolloongabba, Queensland, Australia

Tóm tắt

Tóm tắt Giới thiệu Kết quả của ung thư vú, bao gồm cả sự đáp ứng với liệu pháp, nguy cơ di căn và tỷ lệ sống sót, rất khó dự đoán bằng các phương pháp hiện có, điều này làm nổi bật sự cần thiết cấp bách về các dấu ấn sinh học thông tin hơn. Thụ thể androgen (AR) đã được liên quan đến quá trình ung thư hóa vú, tuy nhiên tiềm năng của nó như một dấu ấn sinh học thông tin vẫn chưa được khai thác triệt để. Trong nghiên cứu này, mức độ protein AR đã được xác định trong một nhóm gồm 73 bệnh nhân ung thư ống dẫn vú xâm lấn độ III. Phương pháp Mức protein thụ thể androgen trong một nhóm mẫu khối u vú được xác định bằng phương pháp hóa miễn dịch và kết quả được so sánh với các đặc điểm lâm sàng, bao gồm cả sự sống sót. Vai trò của các khiếm khuyết trong việc điều chỉnh biểu hiện gen thụ thể androgen đã được nghiên cứu thông qua sàng lọc đột biến và metyl hóa ở đầu 5' của gen, thử nghiệm báo cáo ở đầu 5' và 3' của gen AR, cũng như tìm kiếm các miRNA có thể điều chỉnh biểu hiện gen AR. Kết quả AR được biểu hiện trong 56% các khối u và biểu hiện này có mối liên hệ nghịch đảo đáng kể với tỷ lệ sống sót sau 10 năm (P = 0.004). Một cuộc điều tra về các cơ chế chịu trách nhiệm cho việc mất biểu hiện AR cho thấy rằng hypermethyl hóa của trình tự khởi động AR liên quan đến việc mất biểu hiện AR ở các tế bào ung thư vú nhưng không ở các khối u vú nguyên phát. Ở các khối u vú âm tính với AR, sàng lọc đột biến xác định một đột biến giống nhau (T105A) ở 5'UTR của hai bệnh nhân ung thư vú âm tính với AR nhưng không được báo cáo trong quần thể người bình thường. Tuy nhiên, phân tích thử nghiệm báo cáo của đột biến này không tìm thấy bằng chứng về tác động tiêu cực đến hoạt động của AR 5'UTR. Vai trò của miR-124 trong việc điều chỉnh biểu hiện AR cũng đã được điều tra, tuy nhiên không có bằng chứng nào được tìm thấy cho điều này. Kết luận Nghiên cứu này làm nổi bật tiềm năng của việc biểu hiện AR như một dấu ấn sinh học thông tin cho sự sống sót của bệnh nhân ung thư vú và đặt nền tảng cho một cuộc điều tra toàn diện hơn về cơ sở phân tử của hiện tượng này.

Từ khóa


Tài liệu tham khảo

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98 (19): 10869-10874. 10.1073/pnas.191367098.

Rakha EA, Reis-Filho JS, Ellis IO: Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat. 2010, 120 (2): 293-308. 10.1007/s10549-010-0746-x.

Yeh S, Hu YC, Wang PH, Xie C, Xu Q, Tsai MY, Dong Z, Wang RS, Lee TH, Chang C: Abnormal mammary gland development and growth retardation in female mice and MCF7 breast cancer cells lacking androgen receptor. J Exp Med. 2003, 198 (12): 1899-1908. 10.1084/jem.20031233.

Liao DJ, Dickson RB: Roles of androgens in the development, growth, and carcinogenesis of the mammary gland. J Steroid Biochem Mol Biol. 2002, 80 (2): 175-189. 10.1016/S0960-0760(01)00185-6.

Li S, Han B, Liu G, Ouellet J, Labrie F, Pelletier G: Immunocytochemical localization of sex steroid hormone receptors in normal human mammary gland. J Histochem Cytochem. 2010, 58 (6): 509-515. 10.1369/jhc.2009.954644.

Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, Gerald WL: An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006, 25 (28): 3994-4008. 10.1038/sj.onc.1209415.

Birrell SN, Bentel JM, Hickey TE, Ricciardelli C, Weger MA, Horsfall DJ, Tilley WD: Androgens induce divergent proliferative responses in human breast cancer cell lines. J Steroid Biochem Mol Biol. 1995, 52 (5): 459-467. 10.1016/0960-0760(95)00005-K.

Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, Rimm DL, Liu XS, Brown M: Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011, 20: 119-131. 10.1016/j.ccr.2011.05.026.

Agoff SN, Swanson PE, Linden H, Hawes SE, Lawton TJ: Androgen receptor expression in estrogen receptor-negative breast cancer. Immunohistochemical, clinical, and prognostic associations. Am J Clin Pathol. 2003, 120 (5): 725-731. 10.1309/42F00D0DJD0J5EDT.

Gonzalez-Angulo AM, Stemke-Hale K, Palla SL, Carey M, Agarwal R, Meric-Berstam F, Traina TA, Hudis C, Hortobagyi GN, Gerald WL, et al: Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin Cancer Res. 2009, 15 (7): 2472-2478. 10.1158/1078-0432.CCR-08-1763.

Faber PW, van Rooij HC, van der Korput HA, Baarends WM, Brinkmann AO, Grootegoed JA, Trapman J: Characterization of the human androgen receptor transcription unit. J Biol Chem. 1991, 266 (17): 10743-10749.

Faber PW, van Rooij HC, Schipper HJ, Brinkmann AO, Trapman J: Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. The role of Sp1. J Biol Chem. 1993, 268 (13): 9296-9301.

Chen S, Supakar PC, Vellanoweth RL, Song CS, Chatterjee B, Roy AK: Functional role of a conformationally flexible homopurine/homopyrimidine domain of the androgen receptor gene promoter interacting with Sp1 and a pyrimidine single strand DNA-binding protein. Mol Endocrinol. 1997, 11 (1): 3-15. 10.1210/me.11.1.3.

Takane KK, McPhaul MJ: Functional analysis of the human androgen receptor promoter. Mol Cell Endocrinol. 1996, 119 (1): 83-93. 10.1016/0303-7207(96)03800-2.

Mizokami A, Yeh SY, Chang C: Identification of 3',5'-cyclic adenosine monophosphate response element and other cis-acting elements in the human androgen receptor gene promoter. Mol Endocrinol. 1994, 8 (1): 77-88. 10.1210/me.8.1.77.

Kinoshita H, Shi Y, Sandefur C, Meisner LF, Chang C, Choon A, Reznikoff CR, Bova GS, Friedl A, Jarrard DF: Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res. 2000, 60 (13): 3623-3630.

Waltering KK, Wallen MJ, Tammela TL, Vessella RL, Visakorpi T: Mutation screening of the androgen receptor promoter and untranslated regions in prostate cancer. Prostate. 2006, 66 (15): 1585-1591. 10.1002/pros.20387.

Crocitto LE, Henderson BE, Coetzee GA: Identification of two germline point mutations in the 5'UTR of the androgen receptor gene in men with prostate cancer. J Urol. 1997, 158 (4): 1599-1601. 10.1016/S0022-5347(01)64287-3.

Cox DG, Blanche H, Pearce CL, Calle EE, Colditz GA, Pike MC, Albanes D, Allen NE, Amiano P, Berglund G, et al: A comprehensive analysis of the androgen receptor gene and risk of breast cancer: results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). Breast Cancer Res. 2006, 8 (5): R54-10.1186/bcr1602.

Kyndi M, Sorensen FB, Knudsen H, Overgaard M, Nielsen HM, Andersen J, Overgaard J: Tissue microarrays compared with whole sections and biochemical analyses. A subgroup analysis of DBCG 82 b&c. Acta Oncol. 2008, 47 (4): 591-599. 10.1080/02841860701851871.

Karlsson C, Bodin L, Piehl-Aulin K, Karlsson MG: Tissue Microarray Validation: A Methodologic Study with Special Reference to Lung Cancer. Cancer Epidemiology Biomarkers & Prevention. 2009, 18: 2014-2021. 10.1158/1055-9965.EPI-08-0743.

Castellano I, Allia E, Accortanzo V, Vandone AM, Chiusa L, Arisio R, Durando A, Donadio M, Bussolati G, Coates AS, et al: Androgen receptor expression is a significant prognostic factor in estrogen receptor positive breast cancers. Breast Cancer Res Treat. 2010

Bryan RM, Mercer RJ, Bennett RC, Rennie GC, Lie TH, Morgan FJ: Androgen receptors in breast cancer. Cancer. 1984, 54 (11): 2436-2440. 10.1002/1097-0142(19841201)54:11<2436::AID-CNCR2820541121>3.0.CO;2-H.

Park S, Koo JS, Kim MS, Park HS, Lee JS, Kim SI, Park BW, Lee KS: Androgen receptor expression is significantly associated with better outcomes in estrogen receptor-positive breast cancers. Ann Oncol. 2011

Jarrard DF, Kinoshita H, Shi Y, Sandefur C, Hoff D, Meisner LF, Chang C, Herman JG, Isaacs WB, Nassif N: Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Res. 1998, 58 (23): 5310-5314.

Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ: Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res. 2007, 35 (18): e119-10.1093/nar/gkm662.

Yeap BB, Wilce JA, Leedman PJ: The androgen receptor mRNA. Bioessays. 2004, 26 (6): 672-682. 10.1002/bies.20051.

Hurst DR, Edmonds MD, Welch DR: Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Research. 2009, 69 (19): 7495-7498. 10.1158/0008-5472.CAN-09-2111.

Valastyan S, Benaich N, Chang A, Reinhardt F, Weinberg RA: Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev. 2009, 23 (22): 2592-2597. 10.1101/gad.1832709.

Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC: miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer. 2010

Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, et al: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006, 10 (6): 515-527. 10.1016/j.ccr.2006.10.008.

Francis GD, Jones MA, Beadle GF, Stein SR: Bright-field in situ hybridization for HER2 gene amplification in breast cancer using tissue microarrays: correlation between chromogenic (CISH) and automated silver-enhanced (SISH) methods with patient outcome. Diagn Mol Pathol. 2009, 18: 88-95. 10.1097/PDM.0b013e31816f6374.

Wojdacz TK, Hansen LL, Dobrovic A: A new approach to primer design for the control of PCR bias in methylation studies. BMC Res Notes. 2008, 1: 54-10.1186/1756-0500-1-54.

Korhonen J, Martinmäki P, Pizzi CPR, Ukkonen E: MOODS: fast search for position weight matrix matches in DNA sequences. Bioinformatics. 2009, 25: 3181-3182. 10.1093/bioinformatics/btp554.

Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I, Krogh A, Lenhard B, Sandelin A: JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. 2008, 36: 102-106. 10.1093/nar/gkn449.

Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126 (6): 1203-1217. 10.1016/j.cell.2006.07.031.

Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20. 10.1016/j.cell.2004.12.035.