Ancient basketry on the inside: X-ray computed microtomography for the non-destructive assessment of small archaeological monocotyledonous fragments: examples from Southeast Europe

Springer Science and Business Media LLC - Tập 9 - Trang 1-12 - 2021
Mila Andonova1
1Division of Palaeobotany and Palynology, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria

Tóm tắt

This study proposes non-destructive assessment instrumentation, the X-ray MicroCT scanning, to evaluate archaeological basketry remains prior to any destructive analysis. Three case studies are originating from two archaeological sites in Southeast Europe, with three different stages of preservation (poor, sufficient and very good). In addition, there are two preservation modes—charring and desiccation—along with two conservation situations: treated and untreated with conservation agent fragments. The three different scenarios were chosen to explore the potential range of X-ray MicroCT scanning technology when applied to monocotyledonous small-sized archaeological remains. It was proved that this non-invasive X-ray method is particularly suitable for the often-disadvantaged ancient basketry remains.

Tài liệu tham khảo

Hurcombe L. Perishable material culture in prehistory: investigating the missing majority. Oxford & New York: Routledge; 2014. Herrero-Otal M, Romero-Brugués S, Piqué HR. Plants used in basketry production during the Early Neolithic in the north-eastern Iberian Peninsula. Veg Hist Archaeobot. 2021;30:729–42. https://doi.org/10.1007/s00334-021-00826-1. Di Lernia S, N’siala I, Mercuri A. Saharan prehistoric basketry. Archaeological and archaeobotanical analysis of the early-middle Holocene assemblage from Takarkori (Acacus Mts, SW Libya). J Archaeol Sci. 2012;39:1837–53. https://doi.org/10.1016/j.jas.2012.01.026. Brinkkemper O, Joosten I. The identification of plant fibres from the shipwreck Aanloop Molengat. Interne Rapportage project Aanloop Molengat. 2012. https://www.researchgate.net/publication/303524017_The_identification_of_plant_fibres_from_shipwreck_Aanloop_Molengat. Accessed 6 Oct 2021. Borojevic T, Mountain R. Microscopic identification and sourcing of ancient Egyptian plant fibers using longitudinal thin sectioning. Archaeometry. 2014;55:81–112. https://doi.org/10.1111/j.1475-4754.2012.00673.x. Cunningham J, Rahman I, Lautenschlager S, Rayfield E, Donoghue Ph. A virtual world of paleontology. Trends Ecol Evol. 2014;29:347–57. https://doi.org/10.1016/j.tree.2014.04.004. Plessis A, Broeckhoven Ch, Guelpa A, Gerhard de Roux S. Laboratory X-ray micro-computed tomography: a user guideline for biological samples. GigaScience. 2017;6:1–11. https://doi.org/10.1093/gigascience/gix027. Tuniz C, Zanini F. Microcomputerized tomography (MicroCT) in archaeology. In: Smith C, editor. Encyclopedia of global archaeology. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-51726-1_675-2. Stock S. Microcomputed tomography. Methodology and applications. London: CRS Press, Taylor and Francis group; 2009. Beailieu J, Dutilleul P. Applications of computed tomography (CT) scanning technology in forest research: a timely update and review. Can J For Res. 2019;49(6):1173–88. https://doi.org/10.1139/cjfr-2018-0537. Calo C, Rizzuto M, Carmello-Guerreiro S, Dias C, Wattling J, Schock M, Zimpel C, Furquim L, Pugliese F, Neves E. A correlation analysis of light microscopy and X-ray MicroCT imaging methods applied to archaeological plant remains’ morphological attributes visualization. Sci Rep. 2020;10(1):15105. https://doi.org/10.1038/s41598-020-71726-z. Smith C, Blair K, Lowe B. Identification of historical plant material using micro-computed tomography. Stud Conserv. 2013;58:256–68. https://doi.org/10.1179/2047058412Y.0000000043. Morigi M, Casali F, Bettuzzi M, Bianconi D, Brancaccio R, Cornacchia S, Pasini A, Rossi A, Aldrovandi A, Cauzzi D. CT investigation of two paintings on wood tables by gentile da Fabriano. Nucl Instrum Meth Phys. 2007;580:735–8. https://doi.org/10.1016/j.nima.2007.05.140. Sodini N, Dreossi D, Chen R, Fioravanti M, Giordano A, Herrestal P, Rigon L, Zanini F. Non-invasive microstructural analysis of bowed stringed instruments with synchronisation radiation X-ray micro-tomography. J Cult Herit. 2012;13(3):44–9. https://doi.org/10.1016/j.culher.2012.04.008. Bulcke J, Boone M, Acker J, Stevens M, Hoorebeke L. X-ray tomography as a tool for detailed anatomical analysis. Ann For Sci. 2009;55(5):66–508. https://doi.org/10.1051/forest/2009033. Gale R, Cuttler D. Plants in archaeology. Identification manual of vegetative plant materials used in Europe and the southern Mediterranean to c. 1500. London: Westbury AND Royal Botanic gardens, Kew; 2000. Mayo S, Stevenson A, Wilkins S. Microcomputerized tomography (MicroCT) in archaeology. Materials. 2012. https://doi.org/10.3390/ma50x000x. Mancini L, Tromba G, Zanini F. Structural microanalysis with synchrotron radiation: archaeometric applications at Elettra. J Neutron Res. 2006;14(1):75–9. https://doi.org/10.1080/10238160600673300. Lukesova H, Andersen H, Kolinova M, Holst B. Is it hop? Identyfying hop fibres in a European historica context. Archaeometry. 2019;61:494–505. https://doi.org/10.1111/arcm.12437. Stelzner J, Million S. X-ray computed tomography for the anatomical and dendrochronological analysis of archaeological wood. J Archaeol Sci. 2015;55:188–96. https://doi.org/10.1016/j.jas.2014.12.015. Huisman J, Ngan-Tillard D, Tensen M, Laarman J, Raemaekers D. A question of scales: studying Neolithic subsistence using micro CT scanning of midden deposits. J Archaeol Sci. 2014;49:585–94. https://doi.org/10.1016/j.jas.2014.05.006. Haneca C, Deforce K, Boone M. X-ray sub-micron tomography as a tool for the study of archaeological wood preserved through the corrosion of metal objects. Archaeometry. 2012;54:893–905. https://doi.org/10.1111/j.1475-4754.2011.00640.x. Mizuno S, Torizu R, Sugiyama J. Wood identification of wooden mask using synchroton X-ray microtoography. J Archaeol Sci. 2010;37(11):2842–5. https://doi.org/10.1016/j.jas.2010.06.022. Bird M, Ascough P, Ascough L, Young I, Wood C, Scott A. X-ray microtomographic imaging of charcoal. J Archaeol Sci. 2008;35:2698–706. https://doi.org/10.1016/j.jas.2008.04.018. Adovasio J. Basketry technology. A guide to identification and analysis. Chicago: Aldine Manuals on Archaeology; 1977. Wendrich W. The world according to basketry. An ethno-archaeological Interpretation of Basketry Production in Egypt. Leiden: Centre for Non-western Studies; 2012. Permalink: https://escholarship.org/uc/item/6n42w0rg Beloyanni M. Basketry: a diachronic art and its products at Prehistoric Akrotiri. ΑΛΣ. 2007;5:46–88. Sarpaki A. A palaeoethnobotanical study of the West House, Akrotiri, Thera. Ann Br School Athens. 1992;87:219–30. Kozatsas J, Kotsakis K, Sagris D, David K. Inside out: assessing pottery forming techniques with micro-CT scanning. An example from Middle Neolithic Thessaly. J Archaeol Sci. 2018;100:102–19. https://doi.org/10.1016/j.jas.2018.10.007. Mansbridge, Ch. CT scan interpretation. 2015. http://www.oscestop.com/CT%20interpretation.pdf. Accessed 6 Oct 2021. Cuttler D. Anatomy of the monocotyledons. IV. Juncales. Oxford: Clarendon Press; 1969. Evert R. Esau’s plant anatomy. Meristems, cells and tissues of the plant body—their structure, function and development. New Jersey: Wiley; 2006. Metcalfe CR. Anatomy of the monocotyledons. I. Graminae. Oxford: The Clarendon Press; 1960. Asouti E, Austin Ph. Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environ Archaeol. 2005;10:1–18. https://doi.org/10.1179/env.2005.10.1.1.