Anatomy packing with hierarchical segments: an algorithm for segmentation of pulmonary nodules in CT images

Chi‐Hsuan Tsou1, Kuo‐Lung Lor1, Yeun‐Chung Chang2, Chung‐Ming Chen1
1Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Number 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
2Department of Radiology, National Taiwan University College of Medicine, Number 7, Chung-Shan South Road, Taipei 100, Taiwan

Tóm tắt

Từ khóa


Tài liệu tham khảo

van Klaveren RJ, Oudkerk M, Prokop M, Scholten ET, Nackaerts K, Vernhout R, et al.: Management of lung nodules detected by volume CT scanning. N Engl J Med 2009,361(23):2221–2229. 10.1056/NEJMoa0906085

Furuya K, Murayama S, Soeda H, Murakami J, Ichinose Y, Yabuuchi H, et al.: New classification of small pulmonary nodules by margin characteristics on high-resolution CT. Acta Radiol 1999, 40: 496–504. 10.3109/02841859909175574

Yankelevitz DF, Reeves AP, Kostis WJ, Zhao B, Henschke CI: Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology 2000,217(1):251–256. 10.1148/radiology.217.1.r00oc33251

Li F, Sone S, Abe H, Macmahon H, Doi K: Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology 2004,233(3):793–798. 10.1148/radiol.2333031018

El-Baz A, Beache GM, Gimel’farb G, Suzuki K, Okada K, Elnakib A, et al.: Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imaging 2013, 2013: 1–46.

Mozley PD, Schwartz LH, Bendtsen C, Zhao B, Petrick N, Buckler AJ: Change in lung tumor volume as a biomarker of treatment response: a critical review of the evidence. Ann Oncol 2010,21(9):1751–1755. 10.1093/annonc/mdq051

Gavrielides MA, Kinnard LM, Myers KJ, Petrick N: Noncalcified lung nodules: volumetric assessment with thoracic CT. Radiology 2009,251(1):26–37. 10.1148/radiol.2511071897

Park CM, Goo JM, Lee HJ, Lee CH, Chun EJ, Im JG: Nodular ground-glass opacity at thin-section CT: histologic correlation and evaluation of change at follow-up. J Radiogr 2007,27(2):391–408. 10.1148/rg.272065061

Kim H, Park CM, Woo S, Lee SM, Lee HJ, Yoo CG, et al.: Pure and part-solid pulmonary ground-glass nodules: measurement variability of volume and mass in nodules with a solid portion less than or equal to 5 mm. Radiology 2013,269(2):585–593. 10.1148/radiol.13121849

Naidich DP, Bankier AA, MacMahon H, Schaefer-Prokop CM, Pistolesi M, Goo JM, et al.: Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology 2013,266(1):304–317. 10.1148/radiol.12120628

Scholten ET, Jacobs C, van Ginneken B, Willemink MJ, Kuhnigk JM, van Ooijen PM, et al.: Computer-aided segmentation and volumetry of artificial ground-glass nodules at chest CT. Am J Roentgenol 2013,201(2):295–300. 10.2214/AJR.12.9640

Petrick N, Kim HJ, Clunie D, Borradaile K, Ford R, Zeng R, et al.: Comparison of 1D, 2D, and 3D nodule sizing methods by radiologists for spherical and complex nodules on thoracic CT phantom images. Acad Radiol 2014,21(1):30–40. 10.1016/j.acra.2013.09.020

Kakinuma R, Kodama K, Yamada K, Yokoyama A, Adachi S, Mori K, et al.: Performance evaluation of 4 measuring methods of ground-glass opacities for predicting the 5-year relapse-free survival of patients with peripheral nonsmall cell lung cancer: a multicenter study. J Comput Assist Tomogr 2008,32(5):792–798. 10.1097/RCT.0b013e31815688ae

Revel MP, Bissery A, Bienvenu M, Aycard L, Lefort C, Frija G: Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology 2004,231(2):453–458. 10.1148/radiol.2312030167

Zhao B, Schwartz LH, Moskowitz CS, Ginsberg MS, Rizvi NA, Kris MG: Lung cancer: computerized quantification of tumor response–initial results. Radiology 2006,241(3):892–898. 10.1148/radiol.2413051887

Kuhnigk JM, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S, et al.: Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging 2006,25(4):417–434. 10.1109/TMI.2006.871547

Gu Y, Kumar V, Hall LO, Goldgof DB, Li CY, Korn R, et al.: Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recognit 2013,46(3):692–702. 10.1016/j.patcog.2012.10.005

Henschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS, et al.: CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol 2002, 178: 1053–1057. 10.2214/ajr.178.5.1781053

Kim HY, Shim YM, Lee KS, Han J, Yi CA, Kim YK: Persistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisons. Radiology 2007, 245: 267–275. 10.1148/radiol.2451061682

Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J: Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008,246(3):697–722. 10.1148/radiol.2462070712

Nock R, Nielsen F: Statistical region merging. IEEE Trans Pattern Anal Mach Intell 2004, 26: 1452–1458. 10.1109/TPAMI.2004.110

Tsou CH, Kor KL, Chang YC, Chen CM. Region-based graph cut using hierarchical structure with application to ground-glass opacity pulmonary nodules segmentation. In: Proceedings of SPIE 8669, medical imaging 2013: image processing; 2013. p. 866906.

Dehmeshki J, Amin H, Valdivieso M, Ye X: Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging 2008,27(4):467–480. 10.1109/TMI.2007.907555

Qiang Y, Wang Q, Xu G, Ma H, Deng L, Zhang L, et al.: Computerized segmentation of pulmonary nodules depicted in CT examinations using freehand sketches. Med Phys 2014,41(4):041917. 10.1118/1.4869265

Morel J, Solimini S: Variational methods in image segmentation. Birkhauser, Boston; 1995.

Farag AA, El Munim HE, Graham JH, Farag AA: A novel approach for lung nodules segmentation in chest CT using level sets. IEEE Trans Image Process. 2013,22(12):5202–5213. 10.1109/TIP.2013.2282899

Tan Y, Schwartz LH, Zhao B: Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field. Med Phys 2013,40(4):043502. 10.1118/1.4793409

Vezhnevets V, Konouchine V. Growcut—interactive multi-label n-d image segmentation by cellular automata. In: Graphicon, Novosibirsk Akademgorodok, Russia; 2005.

Wu D, Lu L, Bi J, Shinagawa Y, Boyer K, Krishnan A, et al. Stratified learning of local anatomical context for lung nodules in CT images. In: IEEE Conference on computer vision and pattern recognition (CVPR), San Francisco, CA. IEEE; 2010. p. 2791–8.

Song Q, Chen M, Bai J, Sonka M, Wu X: Surface-region context in optimal multi-object graph-based segmentation: robust delineation of pulmonary tumors. Inf Process Med Imaging 2011, 22: 61–72.

Boykov Y, Funka-Lea G: Graph cuts and efficient N-D image segmentation. Int J Comput Vis 2006,70(2):109–131. 10.1007/s11263-006-7934-5

Li K, Wu X, Chen DZ, Sonka M: Optimal surface segmentation in volumetric images—a graph-theoretic approach. IEEE Trans Pattern Anal Mach Intell 2006,28(1):19–134. 10.1109/TPAMI.2006.11

Arbel’aez P. Boundary extraction in natural images using ultrametric contour maps. In: Proceedings of the fifth IEEE CS workshop perceptual organization in computer vision; 2006.

Lempitsky V, Vedaldi A, Zisserman A. A Pylon model for semantic segmentation. In: Proceedings of the advances in neural information processing systems conference; 2011.

Koffka K: Principles of Gestalt psychology. Harcourt/Brace & World, London, New York; 1935.

Arbeláez P, Maire M, Fowlkes C, Malik J: Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 2011,33(5):898–916. 10.1109/TPAMI.2010.161

Boykov Y, Kolmogorov V: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 2004,26(9):1124–1137. 10.1109/TPAMI.2004.60

Boykov Y, Veksler O, Zabih R: Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 2001,23(11):1222–1239. 10.1109/34.969114

Chalana V, Kim Y: A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans Med Imaging 1997, 16: 642–652. 10.1109/42.640755

Cheng JZ, Chou YH, Huang CS, Chang YC, Tiu CM, Chen KW, et al.: Computer-aided US diagnosis of breast lesions by using cell-based contour grouping. Radiology 2010, 255: 746–754. 10.1148/radiol.09090001

Kim TH, Lee KM, Lee SU. Generative image segmentation using random walks with restart. In: ECCV. Lecture notes in computer science, vol 5304. Berlin, Heidelberg: Springer; 2008. p. 264–75.

Kim TH, Lee KM, Lee SU. Nonparametric higher-order learning for interactive segmentation. In: IEEE Conference on computer vision and pattern recognition (CVPR); 2010. p. 3201–8.

Criminisi A, Shotton J: Decision forests for computer vision and medical image analysis. Springer, London; 2011.

Konukoglu E, Glocker B, Zikic D, Criminisi A: Neighborhood approximation using randomized forests. Med Image Anal 2013,17(7):790–804. 10.1016/j.media.2013.04.013

Criminisi A, Robertson D, Konukoglu E, Shotton J, Pathak S, White S, et al.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Med Image Anal 2013,17(8):1293–1303. 10.1016/j.media.2013.01.001

Socher R, Lin C, Ng AY, Manning C. Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th international conference machine learning; 2011.

Kohli P, Ladický L, Torr PH: Robust higher order potentials for enforcing label consistency. Int J Comput Vis 2009,82(3):302–324. 10.1007/s11263-008-0202-0