Anatomical and cytological studies on the cotton leaf worm spodoptera littoralis (Boisd.) larva infected with some bio-insecticides
Tóm tắt
Từ khóa
Tài liệu tham khảo
Heckel DG (2020) How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Arch Insect Biochem Physiol 104:1–12
Hajek AE, Shapiro-Ilan DI (2018) Ecology of invertebrate diseases. Wiley, Hoboken
Sanahuja G et al (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9(3):283–300
Kumar P, Kamle M, Borah MDK, Sharma B (2021) Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture. Egypt J Biol Pest Control 31:95. https://doi.org/10.1186/s41938-021-00440-3
Zhang S, Wu F, Li Z, Lu Z, Zhang X, Zhang Q, Liu X (2015) Effects of nucleopolyhedrovirus infection on the development of Helicoverpa armigera (Lepidoptera:Noctuidae) and expression of its 20-hydroxyecdysone- and juvenile hormone-related genes. Florida Entomologist 98:682–689
Abdel-Khalik LE, El-Sheikh E, Ragheb D, Ashour M (2017) Efficacy and virulence of Spodoptera littoralis nucleopolyhedrovirus on S littoralis larval feeding and susceptibility. Zagazig J Agricult Res 44:261–271
El-Sheikh E (2015) Efficacy of Spodoptera littoralis nucleopolyhedrovirus on Spodoptera frugiperda (J.E. Smith) and Spodoptera exigua (Hübner): virulence biological effects and inhibition of juvenile hormone esterase. Egypt J Biol Pest Control 25(3):587–595
Takatsuka J, Okuno S, Nakai M, Kunimi Y (2016) Genetic and phenotypic comparisons of viral genotypes from two nucleopolyhedroviruses interacting with a common host species Spodoptera litura (Lepidoptera: Noctuidae). J Invertebr Pathol 139:42–49. https://doi.org/10.1016/j.jip.2016.07.009
Eldridge FB, Edman DJ (2004) Medical Entomology: a text book on public health and veterinary problems caused by arthropods. Springer, London
Wigglesworth VB (1984) The principles of insect physiology, 8th edn. Chapman and Hall, London
Kritsky G (2002) A survey of entomology. Universe, New York
Cunha MAS, Cruz-Landim C (1983) Modificações Histológicas e Histoquímicas do Corpo Gorduroso de Rainhas de Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) durante o Primeiro Ciclo Reprodutivo. Act Biol. 12(1,2,3,4):11–12
Gullan PJ, Cranston PS (2005) The insects on outline of entomology, 3rd edn. Blackweel Publishing, London
Reynolds ES (1963) The use of lead citrate at a high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212
Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225
Hoshizaki DK, Gibbs AG, Bond ND (2012) Fat body, R.F. Chapman’s the insects: structure and function, 5th edn. Cambridge University Press, New York, pp 132–145
Costa-Leonardo AM, Laranjo LT, Janei V, Haifig I (2013) The fat body of termites: functions and stored materials. J Insect Physiol 59:577–587
Park MS, Park P, Takeda M (2013) Roles of fat body trophocytes, myetocytes and urocytes in the American cockroach, Periplaneta americana under starvation conditions: an ultrastructural study. Arthropod Struct Dev 42:287–295
Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42(1):611–643
Schmid-Hempel P (2011) Evolutionary parasitology:the integrated study of infections, immunology, ecology, and genetics. Oxford University Press
Dantzer R (2004) Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500(1–3):399–411
Knowles BH, Dow JAT (1993) The crystal δ-endotoxins of Bacillus thuringiensis: models for their mechanism of action in the insect gut. BioEssays 15:469–476
Boukedi H, Khedher SB, Abdelkefi-Mesrati L, Van Rie J, Tounsi S (2018) Comparative analysis of the susceptibility/tolerance of Spodoptera littoralis to Vip3Aa, Vip3Ae, Vip3Ad and Vip3Af toxins of Bacillus thuringiensis. J Invertebr Pathol 152:30–34. https://doi.org/10.1016/j.jip.2018.01.006
Liu L, Chen Z, Yang Y, Xiao Y, Liu C, Ma Y, Soberón M, Bravo A, Yang Y, Liu K (2018) A single amino acid polymorphism in ABCC2 loop 1 is responsible for differential toxicity of Bacillus thuringiensis Cry1Ac toxin in different Spodoptera (Noctuidae) species. Insect Biochem Mol Biol 100:59–65. https://doi.org/10.1016/j.ibmb.2018.06.004
Paskewitz SM, Brown MR, Collins FH, Lea AO (1989) Ultrastructural localization of phenoloxidase in the Midgut of refractory anopheles gambiae and association of the enzyme with encapsulated plasmodium cynomolgi. J Parasitol 75(4):594–600
Han YW, Shi W, Huang GT, Kinder Haake S, Park NH, Kuramitsu H, Genco RJ (2000) Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 68(6):3140–3146
Zieler H, Dvorak JA (2000) Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proc Natl Acad Sci USA 97(21):11516–11521
Almeida GE, Zanuncio JC, Pratissoli D, Polanczyk RA (2014) Cytotoxicity in the midgut and fat body of Anticarsia gemmatalis (Lepidoptera: Geometridae) larvae exerted by neem seeds extract. Invertebr Surviv J 11:79–86
Suryani AI, Hariani N, Majid AF, Amalia D (2020) Histological changes in the midgut of Spodoptera litura larvae exposured by the extract of Mirabilis jalapa leaves. IOP Conf Ser Earth Environ Sci 484:012107
Barbeta BL, Marshall AT, Gillon AD, Craik DJ, Anderson MA (2008) Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc Natl Acad Sci U S A 105(4):1221–1225. https://doi.org/10.1073/pnas.0710338104. (Epub 2008 Jan 17. PMID: 18202177; PMCID: PMC2234119)
Nasiruddin M, Mordue (luntz) AJ (1993) The effect of azadirachtin on the midgut histology of the locusts, Schistocerca gregaria and locusta migratoria. Tissue Cell 25(6):875–884
Mathavan S, Sudha PM, Pechimuthu SM (1989) Effect of Bacillus thuringiensis israelensis on the midgut cells of Bombyx mori larvae: A histopathological and histochemical study. J Inver tebr Pathol 53:217–227
Iman I (2018) Histological Effect of Bacillus thuringiensis Isolate against Pink Bollworm Larval Midgut, Pectinophora gossypiella (Saund). J. Plant Prot Pathol Mansoura Univ. 9(12):803–806
Lane NJ, Harrison JB, Lee WM (1989) Changes in microvilli and golgi-associated membranes of lepidopteran cells induced by an insecticidally active bacterial-endotoxin. J Cell Sci 93:337–347
Percy J, Fast PG (1983) Bacillus thuringiensis crystal toxin: Ultrastructural studies of its effect on silkworm midgut cells. J Invertebr Pathol 41:86–98
Sutter GR, Raun ES (1967) Histopathology of European-corn-borer larvae treated with Bacillus thuringiensis. J Invertebr Pathol 9(1):90–103
Endo Y, Nishiitsutsuji-Uwo J (1980) Mode of action of Bacillus thuringiensis δ-endotoxin: Histopathological changes in the silk worm midgut. J Invertebr Pathol 36:90–103
Fadok VA (1999) Clearance: the last and often forgotten stage of apoptosis. J Mammary Gland Biol Neoplasia 4(2):203–211. https://doi.org/10.1023/a:1011384009787. (PMID: 10426399)
Engelhard EK, Kam-Morgan LNW, Washburn JO, Volkman LE (1994) The insect tracheal system: a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc Natl Acad Sci USA 91(8):3224–3227
Kirkpatrick BA, Washburn JO, Engelhard EK, Volkman LE (1994) Primary infection of insect tracheae by Autographa californica M nuclear polyhedrosis virus. Virology 203(1):184–186
Washburn JO, Kirkpatrick BA, Volkman LE (1995) Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209:561–568
Dean RL, Locke M, Collins JV (1985) Structure of the fat body. In: Kerkut GA, Gilbert LI (eds) Comprehensa insect physiology, biochemistry and pharmacology, vol 9. Pergamont Press, London, pp 155–210
Chisholm GE, Henner DJ (1988) Multiple early transcripts and splicing of the Autographa californica nuclear polyhedrosis virus IE-1 gene. J Virol 62(9):3193–3200
Qi Y, Wang S-S, Li L-L (2023) IE1 of autographa californica multiple nucleopolyhedrovirus activates low levels of late gene expression in the absence of virus RNA polymerase. Microbiol Spectr 11(1):e03432-e3522. https://doi.org/10.1128/spectrum.03432-22
Costa M, De Paula S, Martins G, Zanuncio J, Sant’Ana A, Serrão J (2016) Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS One 11:e0160928. https://doi.org/10.1371/journal.pone.0160928
Gaban C, Arruda E, Dourado D, Silva L, Paulo N, Cabrini I (2015) Morphological changes in the digestive system of Aedes aegypti L. Induced by [Cu(EDTA)]2- complex ions. J Mosq Res. https://doi.org/10.5376/jmr.2015.05.0021
Knaak N, Fiuza LM (2005) Histopathology of Anticarsia gemmatalis Hübner (Lepidoptera; Noctuidae) treated with Nucleopolyhedrovirus and Bacillus thuringiensis serovar kurstaki. Braz J Microbiol 36:196–200
Salama H, Sharaby A, Magd El-Din M (1993) Mode of action of Bacillus thuringiensis and nuclear polyhedrosis virus in the larvae of Spodoptera littoralis (Boisd.). Int J Trop Insect Sci 14(4):537–543. https://doi.org/10.1017/S1742758400014235
Mahmoud DM, Abd El-Bar MM, Abdul Aziz Radi MH (2012) Combined effect of local isolate Spodoptera littoralis nucleopolyhedrosis virus and Bacillus thuringiensis on Culex pipiens L. larvae (Culicidae: Diptera). J Basic Appl Zool 65(1):74–78. https://doi.org/10.1016/j.jobaz.2012.10.007