Anandamide Revisited: How Cholesterol and Ceramides Control Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of a Lipid Neurotransmitter
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sudhof, 2017, Molecular Neuroscience in the 21(st) Century: A Personal Perspective, Neuron, 96, 536, 10.1016/j.neuron.2017.10.005
Fantini, 2002, Lipid rafts: Structure, function and role in HIV, Alzheimer’s and prion diseases, Expert Rev. Mol. Med., 4, 1, 10.1017/S1462399402005392
Pike, 2006, Rafts defined: A report on the Keystone Symposium on Lipid Rafts and Cell Function, J. Lipid Res., 47, 1597, 10.1194/jlr.E600002-JLR200
Owen, 2012, Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution, Nat. Commun., 3, 1256, 10.1038/ncomms2273
Hao, 2001, Cholesterol depletion induces large scale domain segregation in living cell membranes, Proc. Natl. Acad. Sci. USA, 98, 13072, 10.1073/pnas.231377398
Frisz, 2013, Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts, Proc. Natl. Acad. Sci. USA, 110, E613, 10.1073/pnas.1216585110
Frisz, 2013, Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol, J. Boil. Chem., 288, 16855, 10.1074/jbc.M113.473207
Fantini, J., and Yahi, N. (2015). Brain Lipids in Synaptic Function and Neurological Disease. Clues to Innovative Therapeutic Strategies for Brain Disorders, Elsevier. [1st ed.].
Borroni, 2016, The lipid habitats of neurotransmitter receptors in brain, Biochim. Biophys. Acta, 1858, 2662, 10.1016/j.bbamem.2016.07.005
Fantini, 2009, Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function, Biochim. Biophys. Acta, 1788, 2345, 10.1016/j.bbamem.2009.08.016
Allen, 2007, Lipid raft microdomains and neurotransmitter signaling, Nat. Rev. Neurosci., 8, 128, 10.1038/nrn2059
Devane, 1992, Isolation and structure of a brain constituent that binds to the cannabinoid receptor, Science, 258, 1946, 10.1126/science.1470919
Bieberich, 2012, It’s a lipid’s world: Bioactive lipid metabolism and signaling in neural stem cell differentiation, Neurochem. Res., 37, 1208, 10.1007/s11064-011-0698-5
Lu, 2017, Cannabinoid signaling in health and disease, Can. J. Physiol. Pharmacol., 95, 311, 10.1139/cjpp-2016-0346
Sarne, 2005, Cannabinoids: Between neuroprotection and neurotoxicity, Current drug targets, CNS Neurol. Disord., 4, 677
Okamoto, 2007, Biosynthetic pathways of the endocannabinoid anandamide, Chem. Biodivers., 4, 1842, 10.1002/cbdv.200790155
Fride, 2002, Endocannabinoids in the central nervous system—An overview, Prostaglandins Leukot. Essent. Fatty Acids, 66, 221, 10.1054/plef.2001.0360
Brash, 2001, Arachidonic acid as a bioactive molecule, J. Clin. Investig., 107, 1339, 10.1172/JCI13210
Glickman, 1995, Nature of rate-limiting steps in the soybean lipoxygenase-1 reaction, Biochemistry, 34, 14077, 10.1021/bi00043a013
Bild, 1977, Double dioxygenation of arachidonic acid by soybean lipoxygenase-1, Biochem. Biophys. Res. Commun., 74, 949, 10.1016/0006-291X(77)91610-2
Reggio, 2000, Conformational requirements for endocannabinoid interaction with the cannabinoid receptors, the anandamide transporter and fatty acid amidohydrolase, Chem. Phys. Lipids, 108, 15, 10.1016/S0009-3084(00)00185-7
Mazzarino, 2017, Anandamide-ceramide interactions in a membrane environment: Molecular dynamic simulations data, Data Brief, 14, 163, 10.1016/j.dib.2017.07.024
Fantini, 2017, Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins, Methods Mol. Boil., 1583, 7, 10.1007/978-1-4939-6875-6_2
Alger, 2004, Endocannabinoids: Getting the message across, Proc. Natl. Acad. Sci. USA, 101, 8512, 10.1073/pnas.0402935101
Kreitzer, 2002, Retrograde signaling by endocannabinoids, Curr. Opin. Neurobiol., 12, 324, 10.1016/S0959-4388(02)00328-8
Thakur, 2009, Surface chemistry of Alzheimer’s disease: A Langmuir monolayer approach, Colloids Surf. B Biointerfaces, 74, 436, 10.1016/j.colsurfb.2009.07.043
Di Scala, C., Yahi, N., Fantini, J., and Chahinian, H. (2017). Disruption of anandamide aggregates studied by surface pressure measurements, Unpublished data.
Castagnet, 2005, Fatty acid incorporation is decreased in astrocytes cultured from α-synuclein gene-ablated mice, J. Neurochem., 94, 839, 10.1111/j.1471-4159.2005.03247.x
Chivet, 2012, Emerging role of neuronal exosomes in the central nervous system, Front. Physiol., 3, 145, 10.3389/fphys.2012.00145
Ricci, 2016, DMSO-induced perturbation of thermotropic properties of cholesterol-containing DPPC liposomes, Biochim. Biophys. Acta, 1858, 3024, 10.1016/j.bbamem.2016.09.012
Gurtovenko, 2007, Modulating the structure and properties of cell membranes: The molecular mechanism of action of dimethyl sulfoxide, J. Phys. Chem. B, 111, 10453, 10.1021/jp073113e
Gustavsson, 1990, Brain lipid changes after ethanol exposure, Upsala J. Med. Sci. Suppl., 48, 245
Di Pasquale, E., Chahinian, H., Sanchez, P., and Fantini, J. (2009). The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent. PLoS ONE, 4.
Howlett, 2017, CB1 and CB2 Receptor Pharmacology, Adv. Pharmacol., 80, 169, 10.1016/bs.apha.2017.03.007
Hurst, 2002, Conformational memories and the endocannabinoid binding site at the cannabinoid CB1 receptor, J. Med. Chem., 45, 3649, 10.1021/jm0200761
Tian, 2005, The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer, J. Boil. Chem., 280, 29788, 10.1074/jbc.M502925200
Howlett, 2011, Endocannabinoid tone versus constitutive activity of cannabinoid receptors, Br. J. Pharmacol., 163, 1329, 10.1111/j.1476-5381.2011.01364.x
Fowler, 2013, Transport of endocannabinoids across the plasma membrane and within the cell, FEBS J., 280, 1895, 10.1111/febs.12212
Fegley, 2004, Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172, Proc. Natl. Acad. Sci. USA, 101, 8756, 10.1073/pnas.0400997101
Maccarrone, 2017, Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years, Front. Mol. Neurosci., 10, 166, 10.3389/fnmol.2017.00166
Glaser, 2005, Anandamide transport: A critical review, Life Sci., 77, 1584, 10.1016/j.lfs.2005.05.007
Hermann, 2006, 2-Arachidonoylglycerol (2-AG) membrane transport: History and outlook, AAPS J., 8, E409, 10.1007/BF02854913
Aureli, 2015, Lipid membrane domains in the brain, Biochim. Biophys. Acta, 1851, 1006, 10.1016/j.bbalip.2015.02.001
Marquardt, 2016, Cholesterol’s location in lipid bilayers, Chem. Phys. Lipids, 199, 17, 10.1016/j.chemphyslip.2016.04.001
Schmidt, 2017, Liquid Disordered-Liquid Ordered Phase Coexistence in Lipid/Cholesterol Mixtures: A Deuterium 2D NMR Exchange Study, Langmuir, 33, 1881, 10.1021/acs.langmuir.6b02834
Thakur, 2011, Surface chemistry of lipid raft and amyloid Aβ (1–40) Langmuir monolayer, Colloids Surf. B Biointerfaces, 87, 369, 10.1016/j.colsurfb.2011.05.047
Hammache, 2000, Reconstitution of sphingolipid-cholesterol plasma membrane microdomains for studies of virus-glycolipid interactions, Methods Enzymol., 312, 495, 10.1016/S0076-6879(00)12934-9
Chahinian, 2014, Interaction of Alzheimer’s β-amyloid peptides with cholesterol: Mechanistic insights into amyloid pore formation, Biochemistry, 53, 4489, 10.1021/bi500373k
Mazzarino, 2017, Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells, Chem. Phys. Lipids, 205, 11, 10.1016/j.chemphyslip.2017.04.001
Lonnfors, 2013, Cholesteryl phosphocholine—A study on its interactions with ceramides and other membrane lipids, Langmuir, 29, 2319, 10.1021/la3051324
Metcalf, 2012, Mixing properties of sphingomyelin ceramide bilayers: A simulation study, J. Phys. Chem. B., 116, 4500, 10.1021/jp212325e
Bari, 2005, Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis, J. Boil. Chem., 280, 12212, 10.1074/jbc.M411642200
Sarnataro, 2005, Plasma membrane and lysosomal localization of CB1 cannabinoid receptor are dependent on lipid rafts and regulated by anandamide in human breast cancer cells, FEBS Lett., 579, 6343, 10.1016/j.febslet.2005.10.016
Rukmini, 2001, Cholesterol organization in membranes at low concentrations: Effects of curvature stress and membrane thickness, Biophys. J., 81, 2122, 10.1016/S0006-3495(01)75860-2
Mukherjee, 1996, Membrane organization at low cholesterol concentrations: A study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol, Biochemistry, 35, 1311, 10.1021/bi951953q
Bennett, 2012, Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes, J. Lipid Res., 53, 421, 10.1194/jlr.M022491
Fantini, 2016, A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes, Sci. Rep., 6, 21907, 10.1038/srep21907
Kaczocha, 2009, Identification of intracellular carriers for the endocannabinoid anandamide, Proc. Natl. Acad. Sci. USA, 106, 6375, 10.1073/pnas.0901515106
Fezza, 2008, Fatty acid amide hydrolase: A gate-keeper of the endocannabinoid system, Sub-Cell. Biochem., 49, 101, 10.1007/978-1-4020-8831-5_4
Cravatt, 1996, Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides, Nature, 384, 83, 10.1038/384083a0
Reggio, 2010, Endocannabinoid binding to the cannabinoid receptors: What is known and what remains unknown, Curr. Med. Chem., 17, 1468, 10.2174/092986710790980005
Picone, 2005, (−)-7′-Isothiocyanato-11-hydroxy-1′,1′-dimethylheptylhexahydrocannabinol (AM841), a high-affinity electrophilic ligand, interacts covalently with a cysteine in helix six and activates the CB1 cannabinoid receptor, Mol. Pharmacol., 68, 1623, 10.1124/mol.105.014407
Gimpl, 2016, Interaction of G protein coupled receptors and cholesterol, Chem. Phys. Lipids, 199, 61, 10.1016/j.chemphyslip.2016.04.006
Paila, 2009, Are specific nonannular cholesterol binding sites present in G-protein coupled receptors?, Biochim. Biophys. Acta, 1788, 295, 10.1016/j.bbamem.2008.11.020
Gimpl, 1997, Cholesterol as modulator of receptor function, Biochemistry, 36, 10959, 10.1021/bi963138w
Paila, 2010, Membrane cholesterol in the function and organization of G-protein coupled receptors, Sub-Cell. Biochem., 51, 439, 10.1007/978-90-481-8622-8_16
Ma, 2017, The cubicon method for concentrating membrane proteins in the cubic mesophase, Nat. Protoc., 12, 1745, 10.1038/nprot.2017.057
Grisshammer, 2017, New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors, Protein Sci., 26, 1493, 10.1002/pro.3200
Caffrey, 2003, Membrane protein crystallization, J. Struct. Boil., 142, 108, 10.1016/S1047-8477(03)00043-1
Yin, 2014, GPCR crystallization using lipidic cubic phase technique, Curr. Pharm. Biotechnol., 15, 971, 10.2174/1389201015666140922110325
Hanson, 2008, A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor, Structure, 16, 897, 10.1016/j.str.2008.05.001
Baier, 2017, Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors, Curr. Top. Membr., 80, 3, 10.1016/bs.ctm.2017.05.001
Jamin, 2005, Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor, Mol. Endocrinol., 19, 588, 10.1210/me.2004-0308
Baier, 2011, Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor, Sci. Rep., 1, 69, 10.1038/srep00069
Fantini, 2016, Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains, Chem. Phys. Lipids, 199, 52, 10.1016/j.chemphyslip.2016.02.009
Hua, 2017, Crystal structures of agonist-bound human cannabinoid receptor CB1, Nature, 547, 468, 10.1038/nature23272
Gater, 2014, Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR, Biophys. J., 107, 2305, 10.1016/j.bpj.2014.10.011
Manna, M., Niemela, M., Tynkkynen, J., and Javanainen, M. (2016). Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol. eLife, 5.
Hua, 2016, Crystal Structure of the Human Cannabinoid Receptor CB1, Cell, 167, 750, 10.1016/j.cell.2016.10.004
Sabatucci, 2018, In silico mapping of allosteric ligand binding sites in type-1 cannabinoid receptor, Biotechnol. Appl. Biochem., 65, 21, 10.1002/bab.1589
Park, 2008, Crystal structure of the ligand-free G-protein-coupled receptor opsin, Nature, 454, 183, 10.1038/nature07063
Hildebrand, P.W., Scheerer, P., Park, J.H., Choe, H.W., Piechnick, R., Ernst, O.P., Hofmann, K.P., and Heck, M. (2009). A ligand channel through the G protein coupled receptor opsin. PLoS ONE, 4.
Ledeen, 2008, Nuclear sphingolipids: Metabolism and signaling, J. Lipid Res., 49, 1176, 10.1194/jlr.R800009-JLR200
Parolaro, 2002, Endocannabinoids in the immune system and cancer, Prostaglandins Leukot. Essent. Fatty Acids, 66, 319, 10.1054/plef.2001.0355
Biswas, 2003, Membrane cholesterol but not putative receptors mediates anandamide-induced hepatocyte apoptosis, Hepatology, 38, 1167, 10.1053/jhep.2003.50459
Dainese, 2007, Modulation of the endocannabinoid system by lipid rafts, Curr. Med. Chem., 14, 2702, 10.2174/092986707782023235
Yang, 2010, Anandamide induces cell death through lipid rafts in hepatic stellate cells, J. Gastroenterol. Hepatol., 25, 991, 10.1111/j.1440-1746.2009.06122.x
McFarland, 2005, Lipid rafts: A nexus for endocannabinoid signaling?, Life Sci., 77, 1640, 10.1016/j.lfs.2005.05.010
Sarker, 2003, Anandamide induces cell death independently of cannabinoid receptors or vanilloid receptor 1: Possible involvement of lipid rafts, Cell. Mol. Life Sci., 60, 1200, 10.1007/s00018-003-3055-2
Kaczocha, 2012, Anandamide externally added to lipid vesicles containing trapped fatty acid amide hydrolase (FAAH) is readily hydrolyzed in a sterol-modulated fashion, ACS Chem. Neurosci., 3, 364, 10.1021/cn300001w
Dainese, 2014, Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH, Biochem. J., 457, 463, 10.1042/BJ20130960
Sanson, 2014, Crystallographic study of FABP5 as an intracellular endocannabinoid transporter, Acta Crystallogr. Sect. D Biol. Crystallogr., 70, 290, 10.1107/S1399004713026795
Hannun, 2000, Ceramide in the eukaryotic stress response, Trends Cell Boil., 10, 73, 10.1016/S0962-8924(99)01694-3
Sarda, 1958, Actions of pancreatic lipase on esters in emulsions, Biochim. Biophys. Acta, 30, 513, 10.1016/0006-3002(58)90097-0
Chahinian, 2010, Non-lipolytic and lipolytic sequence-related carboxylesterases: A comparative study of the structure-function relationships of rabbit liver esterase 1 and bovine pancreatic bile-salt-activated lipase, Biochim. Biophys. Acta, 1801, 1195, 10.1016/j.bbalip.2010.07.002
Airola, 2015, Structural Basis for Ceramide Recognition and Hydrolysis by Human Neutral Ceramidase, Structure, 23, 1482, 10.1016/j.str.2015.06.013
Ira, and Johnston, L.J. (2008). Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim. Biophys. Acta, 1778, 185–197.
Somerharju, 2009, The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis, Biochim. Biophys. Acta, 1788, 12, 10.1016/j.bbamem.2008.10.004
Huang, 1996, Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2, Biochem. Biophys. Res. Commun., 220, 834, 10.1006/bbrc.1996.0490
Trajkovic, 2008, Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, 319, 1244, 10.1126/science.1153124
Zha, 1998, Sphingomyelinase treatment induces ATP-independent endocytosis, J. Cell Boil., 140, 39, 10.1083/jcb.140.1.39
Movsesyan, 2004, Anandamide-induced cell death in primary neuronal cultures: Role of calpain and caspase pathways, Cell Death Differ., 11, 1121, 10.1038/sj.cdd.4401442
Giuffrida, 2001, Mechanisms of endocannabinoid inactivation: Biochemistry and pharmacology, J. Pharmacol. Exp. Ther., 298, 7
Di Scala, C., Yahi, N., Fantini, J., and Chahinian, H. (2017). Effect of sphingomyelinase on the mitochondrial toxicity of anandamide in cultured neural cells, Unpublished data.
Smart, 2000, The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1), Br. J. Pharmacol., 129, 227, 10.1038/sj.bjp.0703050
Ryberg, 2007, The orphan receptor GPR55 is a novel cannabinoid receptor, Br. J. Pharmacol., 152, 1092, 10.1038/sj.bjp.0707460
Di Scala, C., Yahi, N., Fantini, J., and Chahinian, H. (2017). Real-time PCR determinations of CB1 and prominin mRNAs expression profile in anandamide-treated cells, Unpublished data.
De, 2017, Ligresti, Actions and Regulation of Ionotropic Cannabinoid Receptors, Adv. Pharmacol., 80, 249, 10.1016/bs.apha.2017.04.001
Shimasue, 1996, Effects of anandamide and arachidonic acid on specific binding of (+)-PN200-110, diltiazem and (−)-desmethoxyverapamil to L-type Ca2+ channel, Eur. J. Pharmacol., 296, 347, 10.1016/0014-2999(95)00826-8
Barann, 2002, Direct inhibition by cannabinoids of human 5-HT3A receptors: Probable involvement of an allosteric modulatory site, Br. J. Pharmacol., 137, 589, 10.1038/sj.bjp.0704829
Liu, 2006, TRPV1, but not P2X, requires cholesterol for its function and membrane expression in rat nociceptors, Eur. J. Neurosci., 24, 1, 10.1111/j.1460-9568.2006.04889.x
Nothdurfter, 2010, Impact of lipid raft integrity on 5-HT3 receptor function and its modulation by antidepressants, Neuropsychopharmacology, 35, 1510, 10.1038/npp.2010.20
Tsujikawa, 2008, Cholesterol depletion modulates basal L-type Ca2+ current and abolishes its -adrenergic enhancement in ventricular myocytes, American journal of physiology, Heart Circ. Physiol., 294, H285, 10.1152/ajpheart.00824.2007
Chik, 2004, Ceramide inhibits L-type calcium channel currents in GH3 cells, Mol. Cell. Endocrinol., 218, 175, 10.1016/j.mce.2003.10.048
Velasco, 2005, Cannabinoids and ceramide: Two lipids acting hand-by-hand, Life Sci., 77, 1723, 10.1016/j.lfs.2005.05.015
Truman, 2014, Evolving concepts in cancer therapy through targeting sphingolipid metabolism, Biochim. Biophys. Acta, 1841, 1174, 10.1016/j.bbalip.2013.12.013