Analytical modeling and computational optimization for a 1-DOF compliant mechanism
Tóm tắt
Từ khóa
#1-DOF compliant mechanism #equivalent stiffness #dynamic modeling #Lagrange method #finite element analysisTài liệu tham khảo
<p>[1] D. M. Ebenstein and L. A. Pruitt. Nanoindentation of biological materials. <em>Nano Today</em>, <strong>1</strong>, (2006), pp. 26–33. <a href="https://doi.org/10.1016/s1748-0132(06)70077-9">https://doi.org/10.1016/s1748-0132(06)70077-9</a>.</p>
<p>[2] N. Alderete, A. Zaheri, and H. D. Espinosa. A novel in situ experiment to investigate wear mechanisms in biomaterials. <em>Experimental Mechanics</em>, <strong>59</strong>, (2019), pp. 659–667. <a href="https://doi.org/10.1007/s11340-019-00532-0">https://doi.org/10.1007/s11340-019-00532-0</a>.</p>
<p>[3] L. L. Howell, P. S. Magleby, and M. B. Olsen. <em>Handbook of compliant mechanisms</em>. Wiley, (2013). <a href="https://doi.org/10.1002/9781118516485">https://doi.org/10.1002/9781118516485</a>.</p>
<p>[4] D. Stojiljković, M. Milošević, D. Ristić-Durrant, V. Nikolić, N. T. Pavlović, I. Ćirić, and N. Ivačko. Simulation, analysis, and experimentation of the compliant finger as a part of hand-compliant mechanism development. <em>Applied Sciences</em>, <strong>13</strong>, (2023). <a href="https://doi.org/10.3390/app13042490">https://doi.org/10.3390/app13042490</a>.</p>
<p>[5] J. D. Nowak, K. A. Rzepiejewska-Malyska, R. C. Major, O. L. Warren, and J. Mich- ler. In-situ nanoindentation in the SEM. <em>Materials Today</em>, <strong>12</strong>, (2010), pp. 44–45. <a href="https://doi.org/10.1016/s1369-7021(10)70144-9">https://doi.org/10.1016/s1369-7021(10)70144-9</a>.</p>
<p>[6] Z. Hu, K. J. Lynne, S. P. Markondapatnaikuni, and F. Delfanian. Material elastic–plastic property characterization by nanoindentation testing coupled with computer modeling. <em>Materials Science and Engineering: A</em>, <strong>587</strong>, (2013), pp. 268–282. <a href="https://doi.org/10.1016/j.msea.2013.08.071">https://doi.org/10.1016/j.msea.2013.08.071</a>.</p>
<p>[7] L. Yuan, M. Ling, J. Lai, H. Li, and X. Zhang. Graphic transfer matrix method for kineto-static and dynamic analyses of compliant mechanisms. <em>Journal of Mechanisms and Robotics</em>, <strong>16</strong>, (2023). <a href="https://doi.org/10.1115/1.4056827">https://doi.org/10.1115/1.4056827</a>.</p>
<p>[8] N. L. Ho, M. P. Dang, and T.-P. Dao. Design and analysis of a displacement sensor-integrated compliant microgripper based on parallel structure. <em>Vietnam Journal of Mechanics</em>, (2020). <a href="https://doi.org/10.15625/0866-7136/14874">https://doi.org/10.15625/0866-7136/14874</a>.</p>
<p>[9] H. Peltola, E. Pääkkönen, P. Jetsu, and S. Heinemann. Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties. <em>Composites Part A: Applied Science and Manufacturing</em>, <strong>61</strong>, (2014), pp. 13–22. <a href="https://doi.org/10.1016/j.compositesa.2014.02.002">https://doi.org/10.1016/j.compositesa.2014.02.002</a>.</p>
<p>[10] N. Graupner. Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. <em>Journal of Materials Science</em>, <strong>43</strong>, (2008), pp. 5222–5229. <a href="https://doi.org/10.1007/s10853-008-2762-3">https://doi.org/10.1007/s10853-008-2762-3</a>.</p>
<p>[11] N. L. Chau, H. G. Le, T.-P. Dao, and V. A. Dang. Design and optimization for a new compliant planar spring of upper limb assistive device using hybrid approach of RSM–FEM and MOGA. <em>Arabian Journal for Science and Engineering</em>, <strong>44</strong>, (2019), pp. 7441–7456. <a href="https://doi.org/10.1007/s13369-019-03795-w">https://doi.org/10.1007/s13369-019-03795-w</a>.</p>
<p>[12] N. L. Chau, H. G. Le, V. A. Dang, and T.-P. Dao. Development and optimization for a new planar spring using finite element method, deep feedforward neural networks, and water cycle algorithm. <em>Mathematical Problems in Engineering</em>, <strong>2021</strong>, (2021), pp. 1–25. <a href="https://doi.org/10.1155/2021/9921383">https://doi.org/10.1155/2021/9921383</a>.</p>
<p>[13] F. Dirksen and R. Lammering. On mechanical properties of planar flexure hinges of compliant mechanisms. <em>Mechanical Sciences</em>, <strong>2</strong>, (2011), pp. 109–117. <a href="https://doi.org/10.5194/ms-2-109-2011">https://doi.org/10.5194/ms-2-</a><a href="https://doi.org/10.5194/ms-2-109-2011">109-2011</a>.</p>
<p>[14] A. Sadollah, H. Eskandar, A. Bahreininejad, and J. H. Kim. Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. <em>Applied Soft Computing</em>, <strong>30</strong>, (2015), pp. 58–71. <a href="https://doi.org/10.1016/j.asoc.2015.01.050">https://doi.org/10.1016/j.asoc.2015.01.050</a>.</p>
<p>[15] M. Nasir, A. Sadollah, Y. H. Choi, and J. H. Kim. A comprehensive review on water cycle algorithm and its applications. <em>Neural Computing and Applications</em>, <strong>32</strong>, (2020), pp. 17433–17488. <a href="https://doi.org/10.1007/s00521-020-05112-1">https://doi.org/10.1007/s00521-020-05112-1</a>.</p>
<p>[16] P. Dudek. FDM 3D printing technology in manufacturing composite elements. <em>Archives of Metallurgy and Materials</em>, <strong>58</strong>, (2013), pp. 1415–1418. <a href="https://doi.org/10.2478/amm-2013-0186">https://doi.org/10.2478/amm-2013-0186</a>.</p>
<p>[17] V. Mazzanti, L. Malagutti, and F. Mollica. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. <em>Polymers</em>, <strong>11</strong>, (2019). <a href="https://doi.org/10.3390/polym11071094">https://doi.org/10.3390/polym11071094</a>.</p>