Analytical Solitons for Langmuir Waves in Plasma Physics with Cubic Nonlinearity and Perturbations

Qin Zhou1, Mohammad Mirzazadeh2
1School of Electronics and Information Engineering, Wuhan Donghu University, Wuhan 430212, People’s Republic of China
2Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, PC 44891-63157 Rudsar-Vajargah, Iran

Tóm tắt

Abstract We presented an analytical study on dynamics of solitons for Langmuir waves in plasma physics. The mathematical model is given by the perturbed nonlinear Schrödinger equation with full nonlinearity and Kerr law nonlinearity. There are three techniques of integrability were employed to extract exact solutions along with the integrability conditions. The topological 1-soliton solutions, singular 1-soliton solutions, and plane wave solution were reported by Ricatti equation expansion approach and then the bright 1-soliton solution, singular 1-soliton solution, periodic singular solutions, and plane wave solution were derived with the help of trial solution method. Finally, based on the G′/G-expansion scheme, we obtained the hyperbolic function travelling wave solution, trigonometric function travelling wave solution, and plane wave solution.

Từ khóa


Tài liệu tham khảo

G. Atif and A. Biswas, J. Multiscale Model. 3, 217 (2011).

A. Biswas, Commun. Nonlinear. Sci. Numer. Simul. 14, 69 (2009).

A. Biswas and C. M. Khalique, Commun. Nonlinear Sci. Numer. Simul. 15, 2245 (2009).

G. Ebadi and A. Biswas, Commun. Nonlinear. Sci. Numer. Simul. 16, 2377 (2011).

X. Geng and Y. Lv, Nonlinear Dynam. 69, 1621 (2012).

S. Kumar, K. Singh, and R. K. Gupta, Pramana. 79, 41 (2012).

M. Savescu, K. R. Khan, P. Naruka, H. Jafari, L. M. Moraru, et al., J. Comput. Theor. Nanosci. 10, 1182 (2013).

M. Savescu, K. R. Khan, R. Kohl, L. Moraru, A. Yildirim, et al., J. Nanoelectr. Optoelectr. 28, 208 (2013).

M. L. Wang, X. Z. Li, and J. L. Zhang, Phys. Lett. A. 372, 417 (2008).

E. Zayed and K. A. Gepreel, Appl. Math. Comput. 212, 1 (2009).

Q. Zhou, Q. P. Zhu, H. Yu, and X. Xiong, Nonlinear Dynam. 80, 983 (2015).

Q. Zhou and S. Liu, Nonlinear Dynam. 81, 733 (2015).

C. Q. Dai and Y. Y. Wang, Nonlinear Dynam. 80, 715 (2015).

C. Q. Dai and Y. Y. Wang, Nonlinear Dynam. 83, 2453 (2016).

L. Q. Kong and C. Q. Dai, Nonlinear Dynam. 81, 1553 (2015).

C. Q. Dai, Y. Y. Wang, and J. Liu, Nonlinear Dynam. 84, 1157 (2016).

C. Q. Dai and Y. J. Xu, Appl. Math. Model. 39, 7420 (2015).

H. Kumar and F. Chand, Optics Laser Technol. 54, 265 (2013).

H. Kumar and F. Chand, J. Theor. Appl. Phys. 8, 114 (2014).

H. Kumar, A. Malik, and F. Chand, Pramana. 80, 361 (2013).

H. Kumar, A. Malik, and F. Chand, J. Math. Phys. 53, 103704 (2012).