Xác thực phương pháp phân tích để xác định thuốc trừ sâu organophosphorus trong thực phẩm cho trẻ em bằng phương pháp chiết xuất lỏng-lỏng biến đổi và phân tích sắc ký khí - ion trap/ phổ khối

Food Analytical Methods - Tập 12 - Trang 41-50 - 2018
Ivan Notardonato1, Mario Vincenzo Russo1, Matteo Vitali2, Carmela Protano2, Pasquale Avino1
1Department of Agriculture, Environment and Food, University of Molise, Campobasso, Italy
2Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy

Tóm tắt

Thực phẩm cho trẻ em được chế biến đặc biệt cho trẻ em từ 4/6 tháng tuổi đến 2 tuổi, với nhiều loại và hương vị khác nhau. Bài báo này đề xuất một giao thức để xác định nhanh chóng và đáng tin cậy 19 loại thuốc trừ sâu organophosphorus (OPs) thông qua một phương pháp dựa trên chiết xuất lỏng-lỏng hỗ trợ siêu âm xoáy kết hợp với phân tích sắc ký khí - phổ khối ion trap (UVALLME–GC-IT/MS). Quá trình phát triển phương pháp bắt đầu từ việc đánh giá dung môi chiết xuất, cụ thể là n-heptan; dung dịch được giữ trên máy trộn vortex trong vòng 5 phút và trong bồn siêu âm ở 100 W trong 6 phút để thúc đẩy phân tán dung môi và chiết xuất. Sau đó, dung dịch được ly tâm ở tốc độ 4000 vòng/phút trong 30 phút: 1 μL chiết xuất hữu cơ được tiêm vào GC-IT/MS. Tất cả các thông số phân tích được điều tra sẽ được thảo luận kỹ lưỡng; các giá trị LODs/LOQs (0,2–1,3 và 0,5–2,9 ng/g) và tỷ lệ thu hồi (81–109%) được so sánh với các bài báo khác nghiên cứu sự xác định OPs trong ma trận thực phẩm dành cho trẻ em. Toàn bộ phương pháp đã được áp dụng cho các mẫu thực phẩm cho trẻ em trên thị trường, bao gồm mẫu đông khô và mẫu mềm: kết quả không cho thấy bất kỳ giá trị ô nhiễm đáng kể nào.

Từ khóa

#thực phẩm cho trẻ em #thuốc trừ sâu organophosphorus #chiết xuất lỏng-lỏng #sắc ký khí #phổ khối

Tài liệu tham khảo

Amendola G, Pelosi P, Barbini DA (2015) Determination of pesticide residues in animal origin baby foods by gas chromatography coupled with triple quadrupole mass spectrometry. J Environ Sci Health B 50:109–120 Anagnostopoulos CJ, Aplada Sarli P, Miliadis GE, Haroutounian CA (2010) Validation of the QuEChERS method for the determination of 25 priority pesticide residues in cereal-based baby foods by gas chromatography with electron capture and nitrogen phosphorous detection. Hell Plant Protect J 3:71–80 Ault JA, Schofield CM, Johnson LD, Waltz RH (1979) Automated gel permeation chromatographic preparation of vegetables, fruits, and crops for organophosphate residue determination utilizing flame photometric detection. J Agric Food Chem 27:825–828 Authority of Ireland (2004) Report on surveillance of infant food for pesticide residues. Available online: https://www.fsai.ie/uploadedFiles/pesticide_residues_infant.pdf (accessed on November 2017) Cartoni GP, Goretti G, Monticelli B, Russo MV (1986) Evaluation of capillary gas chromatographic columns in series: analytical application to lemon oil. J Chromatogr A 370:93–101 Cartoni GP, Castellani L, Goretti G, Russo MV, Zacchei P (1991) Gas–liquid microcapillary columns precoated with graphitized carbon black. J Chromatogr A 552:197–204 Cinelli G, Avino P, Notardonato I, Russo MV (2014a) Ultrasound-vortex-assisted dispersive liquid–liquid microextraction coupled with gas chromatography with a nitrogen–phosphorus detector for simultaneous and rapid determination of organophosphorus pesticides and triazines in wine. Anal Methods 6:782–790 Cinelli G, Avino P, Notardonato I, Centola A, Russo MV (2014b) Study of XAD-2 adsorbent for the enrichment of trace levels of phthalate esters in hydroalcoholic food beverages and analysis by gas chromatography coupled with flame ionization and ion-trap mass spectrometry detectors. Food Chem 146:181–187 Codex Alimentarius Commission (2009) Pesticide maximum residue limit (MRL) legislation around the world. Ministry of Primary Industries, New Zealand. Available online: http://www.foodsafety.govt.nz/industry/sectors/plant-products/pesticide-mrl/worldwide.htm (accessed on January 2018) Cojocariu C, Hetmanski MT, Silcock P, Fussell RJ (2015) Three-fold increase in productivity for pesticide residue analysis in baby food using fast triple quadrupole GC-MS/MS. application note 10432, Thermo Scientific. Available online: https://tools.thermofisher.com/content/sfs/brochures/AN-10432-GC-MS-Pesticides-Baby-Food-AN10432-EN.pdf (accessed on November 2017) D’Souza PE (2011) Concentrations of pesticide residues in baby foods: understanding a common pathway of exposure for infants. Master’s thesis, Emory University, 22 April 2011. Available online http://pid.emory.edu/ark:/25593/948f6 (accessed on 10 October 2017) Erney DR (1995) Determination of organophosphorus pesticides in whole/chocolate/skim-milk and infant formula using solid-phase extraction with capillary gas chromatography/flame photometric detection. J Sep Sci 18:59–62 Eskenazi B, Rosas LG, Marks AR, Bradman A, Harley K, Holland N, Johnson C, Fenster L, Barr DB (2007) Pesticide toxicity and the developing brain. Basic Clin Pharmacol Toxicol 102:228–236 European Commission (2005) Commission Regulation (EU) No 396/2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EC, 16/03/2005 European Commission (2013) Method validation and quality control procedures for pesticide residues analysis in food and feed. SANCO/12571/2013. 2013, pp. 42. Available online http://www.accredia.it/UploadDocs/4584_AqcGuidance_Sanco_2013_12571.pdf (accessed on June 2017) Fenske RA, Kedan G, Lu C, Fisker-Andersen JA, Curl CL (2002) Assessment of organophosphorous pesticide exposures in the diets of preschool children in Washington state. J Expo Anal Environ Epidemiol 22:21–28 Gelardi RC, Mountford MK (1993) Infant formulas: evidence of the absence of pesticide residues. Regul Toxicol Pharmacol 17:181–192 Georgakopoulos P, Mylona A, Athanasopoulos P, Drosinos EH, Skandamis PN (2009) Evaluation of cost-effective methods in the pesticide residue analysis of non-fatty baby foods. Food Chem 115:1164–1169 Georgakopoulos P, Zachari R, Mataragas M, Athanasopoulos P, Drosinos EH, Skandamis PN (2011) Optimisation of octadecyl (C18) sorbent amount in QuEChERS analytical method for the accurate organophosphorus pesticide residues determination in low-fatty baby foods with response surface methodology. Food Chem 128:536–542 González-Curbelo MÁ, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MÁ (2013) Determination of organophosphorus pesticides and metabolites in cereal-based baby foods and wheat flour by means of ultrasound-assisted extraction and hollow-fiber liquid-phase microextraction prior to gas chromatography with nitrogen phosphorus detection. J Chromatogr A 1313:166–174 Hercegová A, Dömötörová M, Matisová E, Kirchnera M, Otrekala R, Stefuca V (2005) Fast gas chromatography with solid phase extraction clean-up for ultratrace analysis of pesticide residues in baby food. J Chromatogr A 1084:46–53 Hercegová A, Dömötörová M, Kruzlicová D, Matisová E (2006) Comparison of sample preparation methods combined with fast gas chromatography-mass spectrometry for ultratrace analysis of pesticide residues in baby food. J Sep Sci 29:1102–1109 Knoll JE (1985) Estimation of the limit of detection in chromatography. J Chromatogr Sci 23:422–425 Meeker JD (2012) Exposure to environmental endocrine disruptors and child development. Arch Pediatr Adolesc Med 166:E1–E7 Melgar MJ, Santaeufemia M, García MA (2010) Organophosphorus pesticide residues in raw milk and infant formulas from Spanish northwest. J Env Sci Health B 45:595–600 Mezcua M, Repetti MR, Agüera A, Ferrer C, García-Reyes JF, Fernández-Alba AR (2007) Determination of pesticides in milk-based infant formulas by pressurized liquid extraction followed by gas chromatography tandem mass spectrometry. Anal Bioanal Chem 389:1833–1840 Mirabelli MF, Wolf J-C, Zenobi R (2016) Pesticide analysis at ppt concentration levels: coupling nano-liquid chromatography with dielectric barrier discharge ionization-mass spectrometry. Anal Bioanal Chem 408:3425–3434 Mukherjee I, Gopal M (1996) Insecticide residues in baby food, animal feed, and vegetables by gas liquid chromatography. Bull Environ Contam Toxicol 56:381–388 National Research Council (1993) Committee on Pesticides in the Diets of Infants and Children. Pesticides in the diets of infants and children. ISBN: 0-309-58535-X. Available online: http://www.nap.edu/catalog/2126.html (accessed on January 2018) Pérez-Ortega P, Lara-Ortega FJ, Gilbert-López B, Moreno-González D, García-Reyes JF, Molina-Díaz A (2017) Screening of over 600 pesticides, veterinary drugs, food-packaging contaminants, mycotoxins, and other chemicals in food by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS). Food Anal Methods 10:1216–1244 Petrarca MH, Fernandes JO, Godoy HT, Cunha SC (2016) Multiclass pesticide analysis in fruit-based baby food: a comparative study of sample preparation techniques previous to gas chromatography-mass spectrometry. Food Chem 212:528–536 Russo MV, Goretti G, Soriero A (1996) Preparation and application of fused-silica capillary microcolumns (25–50 μm ID) in gas chromatography. Ann Chim 86:115–124 Russo MV, Campanella L, Avino P (2002) Determination of organophosphorus pesticide residues in human tissues by capillary gas chromatography-negative chemical ionization mass spectrometry analysis. J Chromatogr B 780:431–441 Russo MV, Avino P, Cinelli G, Notardonato I (2012) Sampling of organophosphorus pesticides at trace levels in the atmosphere using XAD-2 adsorbent and analysis by gas chromatography coupled with nitrogen-phosphorus and ion-trap mass spectrometry detectors. Anal Bioanal Chem 404:1517–1527 Russo MV, Avino P, Centola A, Notardonato I, Cinelli G (2014a) Rapid and simple determination of acrylamide in conventional cereal-based foods and potato chips through conversion to 3-[bis(trifluoroethanoyl)amino]-3-oxopropyl trifluoroacetate by gas chromatography coupled with electron capture and ion trap mass spectrometry detectors. Food Chem 146:204–211 Russo MV, Notardonato I, Avino P, Cinelli G (2014b) Fast determination of phthalate ester residues in soft drinks and light alcoholic beverages by ultrasound/vortex assisted dispersive liquid–liquid microextraction followed by gas chromatography–ion trap mass spectrometry. RSC Adv 4:59655–59663 Russo MV, Notardonato I, Avino P, Cinelli G (2014c) Determination of phthalate esters at trace levels in light alcoholic drinks and soft drinks by XAD-2 adsorbent and gas chromatography coupled with ion trap-mass spectrometry detection. Anal Methods 6:7030–7037 Russo MV, Avino P, Perugini L, Notardonato I (2015) Extraction and GC-MS analysis of phthalate esters in food matrices: a review. RSC Adv 5:37023–37043 Russo MV, Avino P, Notardonato I (2016) Fast analysis of phthalates in freeze-dried baby foods by ultrasound-vortex-assisted liquid–liquid microextraction coupled with gas chromatography–ion trap/mass spectrometry. J Chromatogr A 1474:1–7 Shimadzu (2013) Analysis of organophosphorus pesticides in baby foods using a triple-quadrupole GC/MS/MS system. Appl. Note No. GCMS-1304. Available online: http://www.ssi.shimadzu.com/products/literature/gcms/gcms-1304.pdf (accessed on 10 December 2017) Vukovic G, Shtereva D, Bursic V, Mladenova R, Lazic R (2012) Application of GC-MSD and LC-MS/MS for the determination of priority pesticides in baby foods in Serbian market. LWT- Food Sci Technol. 49:312–319 Yang A, El-Atya AMA, Park J-H, Goudah A, Rahman MM, Do J-A, Choi O-J, Shim J-H (2014) Analysis of 10 systemic pesticide residues in various baby foods using liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 28:735–741 Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N (2010) Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-a. Talanta 80:2057–2062