Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model

Journal of Statistical Physics - Tập 87 Số 1-2 - Trang 115-136 - 1997
Xiaoyi He1, Qisu Zou2,3, Li–Shi Luo4,5, Micah Dembo1
1Theoretical Biology and Biophysics Group (T-10), MS-K710, Theoretical Division, Los Alamos National Laboratory, Los Alamos
2Complex Systems Group (T-13), MS-B213, Theoretical Division, Los Alamos National Laboratory, Los Alamos
3Department of Mathematics, Kansas State University, Manhattan
4Computational Science Methods Group (XCM), MS-F645, X Division, Los Alamos National Laboratory, Los Alamos
5ICASE, NASA Langley Research Center, Hampton

Tóm tắt

Từ khóa


Tài liệu tham khảo

D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, A consistent hydrodynamics boundary condition for the lattice Boltzmann method.Phys. Fluids 7:203 (1995).

D. R. Noble, J. G. Georgiadis, and R. O. Buckius, Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows,J. Stat. Phys. 81:17 (1995).

T. Inamuro, M. Yoshino, and F. Ogino, A non-slip boundary condition for lattice Boltzmann simulations,Phys. Fluids 7:2928 (1995); Erratum,8:1124 (1996).

G. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata,Phys. Rev. Lett. 61:2332 (1988).

F. Higuera and J. Jimenez, Boltzmann approach to lattice gas simulationsEurophys. Lett. 9:663 (1989).

H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier-Stokes equations using a lattice Boltzmann method,Phys. Rev. A 45:R5339 (1991).

Y. H. Qian, D. d'Humières, and P. Lallemand, Lattice BGK models for the Navier-Stokes equation,Europhys. Lett. 17:479 (1992).

R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications,Phys. Rep. 222:145 (1992).

X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components,Phys. Rev. E 47: 1815 (1993); Simulation of non-ideal gases and liquid-gas phase transitions by the lattice Boltzmann equation,Phys. Rev. E 49:2941 (1994).

A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part I. Theoretical foundation,J. Fluid Mech. 271:285 (1994); Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part II. Numerical results,J. Fluid Mech. 271:311 (1994).

S. Chen, H. Chen, and W. H. Matthaeus, Lattice Boltzmann magnetohydrodynamics,Phys. Rev. Lett. 67:3776 (1991).

S. P. Dawson, S. Chen, and G. Doolen, Lattice Boltzmann computations for reaction-diffusion equations,J. Chem. Phys. 98:1514 (1993).

S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A. Cogley, Simulation of cavity flow by the lattice Boltzmann method,J. Comp. Phys. 118:329 (1995).

P. A. Skordos, Initial and boundary conditions for the lattice Boltzmann method,Phys. Rev. E 48:4823 (1993).

R. Cornubert, D. d'Humières, and D. Levermore, A Knudsen layer theory for lattice gases.Physica D 47(6):241 (1991).

I. Ginzbourg and P. M. Adler Boundary condition analysis for the three-dimensional lattice Boltzmann model,J. Phys. II France 4:191 (1994).

L.-S. Luo, H. Chen, S. Chen, G. D. Doolen, and Y.-C. Lee, Generalized hydrodynamic transport in lattice-gas automata.Phys. Rev. A 43:R7097 (1991).

Q. Zou, S. Hou and G. D. Doolen, Analytical solutions of the lattice Boltzmann BGK model,J. Stat. Phys. 81:319 (1995).

U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Lattice gas hydrodynamics in two or three dimensions,Complex Systems 1:649 (1987).

A. K. Gunstensen and D. H. Rothman, Microscopic modeling of immiscible fluids in three dimensions by a lattice-Boltzmann method. MIT Porous Flow Project, Report No.4, 20 (1991).

L. P. Kadanoff, G. R. McNamara, and G. Zanetti, From automata to fluid flow: Comparisons of simulation and theory,Phys. Rev. A 40:4527 (1989).