Analysis of risk factors progression of preterm delivery using electronic health records

BioData Mining - Tập 15 - Trang 1-16 - 2022
Zeineb Safi1, Neethu Venugopal1, Haytham Ali2, Michel Makhlouf3, Faisal Farooq4, Sabri Boughorbel4
1Research Department, Sidra Medicine, Doha, Qatar
2Division of Neonatalogy, Sidra Medicine, Doha, Qatar
3Department of Maternal-Fetal Medicine, Sidra Medicine, Doha, Qatar
4Qatar Computing Research Institute, HBKU, Doha, Qatar

Tóm tắt

Preterm deliveries have many negative health implications on both mother and child. Identifying the population level factors that increase the risk of preterm deliveries is an important step in the direction of mitigating the impact and reducing the frequency of occurrence of preterm deliveries. The purpose of this work is to identify preterm delivery risk factors and their progression throughout the pregnancy from a large collection of Electronic Health Records (EHR). The study cohort includes about 60,000 deliveries in the USA with the complete medical history from EHR for diagnoses, medications and procedures. We propose a temporal analysis of risk factors by estimating and comparing risk ratios and variable importance at different time points prior to the delivery event. We selected the following time points before delivery: 0, 12 and 24 week(s) of gestation. We did so by conducting a retrospective cohort study of patient history for a selected set of mothers who delivered preterm and a control group of mothers that delivered full-term. We analyzed the extracted data using logistic regression and random forests models. The results of our analyses showed that the highest risk ratio and variable importance corresponds to history of previous preterm delivery. Other risk factors were identified, some of which are consistent with those that are reported in the literature, others need further investigation. The comparative analysis of the risk factors at different time points showed that risk factors in the early pregnancy related to patient history and chronic condition, while the risk factors in late pregnancy are specific to the current pregnancy. Our analysis unifies several previously reported studies on preterm risk factors. It also gives important insights on the changes of risk factors in the course of pregnancy. The code used for data analysis will be made available on github.

Tài liệu tham khảo