Analysis of pooled genome sequences from Djallonke and Sahelian sheep of Ghana reveals co-localisation of regions of reduced heterozygosity with candidate genes for disease resistance and adaptation to a tropical environment

Springer Science and Business Media LLC - Tập 20 - Trang 1-14 - 2019
M. Yaro1, K. A. Munyard1, E. Morgan1, R. J. N. Allcock2,3, M. J. Stear4,5, D. M. Groth1
1School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth, Australia
2The University of Western Australia, Perth, Australia
3Pathwest Laboratory Medicine WA, QEII Medical Centre, Nedlands, Australia
4Agribio centre for Agribioscience, La Trobe University, Melbourne, Australia
5Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK

Tóm tắt

The Djallonke sheep is well adapted to harsh environmental conditions, and is relatively resistant to Haemonchosis and resilient to animal trypanosomiasis. The larger Sahelian sheep, which cohabit the same region, is less well adapted to these disease challenges. Haemonchosis and Trypanosomiasis collectively cost the worldwide animal industry billions of dollars in production losses annually. Here, we separately sequenced and then pooled according to breed the genomes from five unrelated individuals from each of the Djallonke and Sahelian sheep breeds (sourced from Ghana), at greater than 22-fold combined coverage for each breed. A total of approximately 404 million (97%) and 343 million (97%) sequence reads from the Djallonke and Sahelian breeds respectively, were successfully mapped to the sheep reference genome Oar v3.1. We identified approximately 11.1 million and 10.9 million single nucleotide polymorphisms (SNPs) in the Djallonke and Sahelian breeds, with approximately 15 and 16% respectively of these not previously reported in sheep. Multiple regions of reduced heterozygosity were also found; 70 co-localised within genomic regions harbouring genes that mediate disease resistance, immune response and adaptation in sheep or cattle. Thirty- three of the regions of reduced heterozygosity co-localised with previously reported genes for resistance to haemonchosis and trypanosomiasis. Our analyses suggest that these regions of reduced heterozygosity may be signatures of selection for these economically important diseases.

Tài liệu tham khảo

Traoré A, Notter DR, Soudre A, Kaboré A, Álvarez I, Fernández I, Sanou M, Shamshuddin M, Periasamy K, Tamboura HH, et al. Resistance to gastrointestinal parasite infection in Djallonké sheep. Animal. 2017;11:1–9. Goossens B, Osaer S, Ndao M, Van Winghem J, Geerts S. The susceptibility of Djallonke and Djallonke-Sahelian crossbred sheep to Trypanosoma congolense and helminth infection under different diet levels. Vet Parasitol. 1999;85(1):25–41. Dolan RB. Genetics and trypanotolerance. Parasitol Today. 1987;3(5):137–43. Naessens J. Bovine trypanotolerance: a natural ability to prevent severe anaemia and haemophagocytic syndrome? Int J Parasitol. 2006;36(5):521–8. Muigai AWT, Hanotte O. The origin of African sheep: archaeological and genetic perspectives. Afr Archaeol Rev. 2013;30(1):39–50. Peripolli E, Munari DP, Silva MVGB, Lima ALF, Irgang R, Baldi F. Runs of homozygosity: current knowledge and applications in livestock. Anim Genet. 2016;48(3):255. Marshall K, Mugambi JM, Nagda S, Sonstegard TS, Van Tassell CP, Baker RL, Gibson JP. Quantitative trait loci for resistance to Haemonchus contortus artificial challenge in red Maasai and Dorper sheep of East Africa. Anim Genet. 2013;44(3):285–95. Benavides MV, Sonstegard TS, Van Tassell C. Genomic regions associated with sheep resistance to gastrointestinal nematodes. Trends Parasitol. 2016;32(6):470–80. Goossens B, Osaer S, Kora S, Jaitner J, Ndao M, Geerts S. The interaction of Trypanosoma congolense and Haemonchus contortus in Djallonke sheep. Int J Parasitol. 1997;27(12):1579–84. Osaer S, Goossens B, Kora S, Gaye M, Darboe L. Health and productivity of traditionally managed Djallonke sheep and west African dwarf goats under high and moderate trypanosomosis risk. Vet Parasitol. 1999;82(2):101–19. Murray M, Trail JCM. Genetic resistance to animal trypanosomiasis in Africa. Prev Vet Med. 1984;2(1–4):541–51. Sanni MT, Gbolabo OO, Mufliat AA, Abdulmojeed Y, Christian ONI, Olufunmilayo AA, Adewale OT, Michael OO, Mathew W, Michael IT, et al. Molecular diagnosis of subclinical African Trypanosoma vivax infection and association with physiological indices and serum metabolites in extensively managed goats in the tropics. Open J Vet Med. 2013;03:39. Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African trypanosomiasis-associated anemia: the contribution of the interplay between parasites and the mononuclear phagocyte system. Front Immunol. 2018;9:218. Geerts S, Osaer S, Goossens B, Faye D. Trypanotolerance in small ruminants of sub-Saharan Africa. Trends Parasitol. 2009;25(3):132–8. Namangala B. Contribution of innate immune responses towards resistance to African trypanosome infections. Scand J Immunol. 2012;75(1):5–15. Yaro M, Munyard KA, Stear MJ, Groth DM. Combatting African animal Trypanosomiasis (AAT) in livestock: the potential role of trypanotolerance. Vet Parasitol. 2016;225:43–52. Brahi OHD, Xiang H, Chen X, Farougou S, Zhao X. Mitogenome revealed multiple postdomestication genetic mixtures of west African sheep. J Anim Breed Genet. 2015;132(5):399–405. Yaro M, Munyard KA, Morgan E, Allcock RJ, Stear MJ, Groth DM. P4041 Pooled whole-genome sequencing reveals molecular signatures of natural adaptive selection in Djallonke sheep of Ghana. J Anim Sci. 2016;94(7supplement4)):98–9. Yuan Y, Xu H, Leung RK-K. An optimized protocol for generation and analysis of ion proton sequencing reads for RNA-Seq. BMC Genomics. 2016;17(1):403. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome project data processing S: the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565. Reich D, Price AL, Patterson N. Principal component analysis of genetic data. Nat Genet. 2008;40:491. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28(24):3326–8. Gormez Z, Bakir-Gungor B, Sagiroglu MS. HomSI: a homozygous stretch identifier from next-generation sequencing data. Bioinformatics. 2014;30(3):445–7. Bayrakli F, Poyrazoglu HG, Yuksel S, Yakicier C, Erguner B, Sagiroglu MS, Yuceturk B, Ozer B, Doganay S, Tanrikulu B, et al. Hereditary spastic paraplegia with recessive trait caused by mutation in KLC4 gene. J Hum Genet. 2015;60(12):763–8. Kancheva D, Atkinson D, De Rijk P, Zimon M, Chamova T, Mitev V, Yaramis A, Maria Fabrizi G, Topaloglu H, Tournev I, et al. Novel mutations in genes causing hereditary spastic paraplegia and Charcot-Marie-tooth neuropathy identified by an optimized protocol for homozygosity mapping based on whole-exome sequencing. Genet Med. 2016;18(6):600–7. Tuncer FN, Gormez Z, Calik M, Altiokka Uzun G, Sagiroglu MS, Yuceturk B, Yuksel B, Baykan B, Bebek N, Iscan A, et al. A clinical variant in SCN1A inherited from a mosaic father cosegregates with a novel variant to cause Dravet syndrome in a consanguineous family. Epilepsy Res. 2015;113:5–10. Brown EA, Pilkington JG, Nussey DH, Watt KA, Hayward AD, Tucker R, Graham AL, Paterson S, Beraldi D, Pemberton JM, et al. Detecting genes for variation in parasite burden and immunological traits in a wild population: testing the candidate gene approach. Mol Ecol. 2013;22(3):757–73. Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky B, Sayre B, Mwacharo JM, Rothschild MF. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity. 2016;116(3):255–64. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, et al. Ensembl 2015. Nucleic Acids Res. 2015;43(D1):D662–9. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, et al. Ensembl 2016. Nucleic Acids Res. 2016;44(D1):D710–6. Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L, Pignatelli M, Vilella AJ, Searle SMJ, Amode R, Brent S, et al. Ensembl comparative genomics resources. Database. 2016;2016:bav096. Hu ZL, Park CA, Reecy JM. Developmental progress and current status of the animal QTLdb. Nucleic Acids Res. 2016;44(D1):D827–33. Periasamy K, Pichler R, Poli M, Cristel S, Cetrá B, Medus D, Basar M, KT A, Ramasamy S, Ellahi MB, et al. Candidate Gene Approach for Parasite Resistance in Sheep – Variation in Immune Pathway Genes and Association with Fecal Egg Count. PLoS One. 2014;9(2):e88337. McRae KM, McEwan JC, Dodds KG, Gemmell NJ. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genomics. 2014;15(1):1–13. Benavides MV, Sonstegard TS, Kemp S, Mugambi JM, Gibson JP, Baker RL, Hanotte O, Marshall K, Van Tassell C. Identification of novel loci associated with gastrointestinal parasite resistance in a red Maasai x Dorper backcross population. PLoS One. 2015;10(4):e0122797. Yang Y, Zhou Q-J, Chen X-Q, Yan B-L, Guo X-L, Zhang H-L, Du A-F. Profiling of differentially expressed genes in sheep T lymphocytes response to an artificial primary Haemonchus contortus infection. Parasit Vectors. 2015;8(1):235. Guo Z, González JF, Hernandez JN, McNeilly TN, Corripio-Miyar Y, Frew D, Morrison T, Yu P, Li RW. Possible mechanisms of host resistance to Haemonchus contortus infection in sheep breeds native to the Canary Islands. Sci Rep. 2016;6:26200. Hanotte O, Ronin Y, Agaba M, Nilsson P, Gelhaus A, Horstmann R, Sugimoto Y, Kemp S, Gibson J, Korol A, et al. Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant west African N’Dama and susceptible east African Boran cattle. Proc Natl Acad Sci U S A. 2003;100(13):7443–8. Dayo GK, Gautier M, Berthier D, Poivey JP, Sidibe I, Bengaly Z, Eggen A, Boichard D, Thevenon S. Association studies in QTL regions linked to bovine trypanotolerance in a west African crossbred population. Anim Genet. 2012;43(2):123–32. Noyes H, Brass A, Obara I, Anderson S, Archibald AL, Bradley DG, Fisher P, Freeman A, Gibson J, Gicheru M, et al. Genetic and expression analysis of cattle identifies candidate genes in pathways responding to Trypanosoma congolense infection. Proc Natl Acad Sci U S A. 2011;108(22):9304–9. Maillard JC, Berthier D, Thevenon S, Piquemal D, Chantal I, Marti J. Efficiency and limits of the serial analysis of gene expression (SAGE) method: discussions based on first results in bovine trypanotolerance. Vet Immunol Immunopathol. 2005;108(1–2):59–69. Berthier D, Quere R, Thevenon S, Belemsaga D, Piquemal D, Marti J, Maillard JC. Serial analysis of gene expression (SAGE) in bovine trypanotolerance: preliminary results. Genet Sel Evol. 2003;35(Suppl 1):S35–47. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. Dayo GK, Thevenon S, Berthier D, Moazami-Goudarzi K, Denis C, Cuny G, Eggen A, Gautier M. Detection of selection signatures within candidate regions underlying trypanotolerance in outbred cattle populations. Mol Ecol. 2009;18(8):1801–13. O’Gorman GM, Park SD, Hill EW, Meade KG, Coussens PM, Agaba M, Naessens J, Kemp SJ, MacHugh DE. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility. BMC Genomics. 2009;10(1):207. Choi JW, Choi BH, Lee SH, Lee SS, Kim HC, Yu D, Chung WH, Lee KT, Chai HH, Cho YM, et al. Whole-genome Resequencing analysis of Hanwoo and Yanbian cattle to identify genome-wide SNPs and signatures of selection. Mol Cell. 2015;38(5):466–73. Gudbjartsson DF, Sulem P, Helgason H, Gylfason A, Gudjonsson SA, Zink F, Oddson A, Magnusson G, Halldorsson BV, Hjartarson E, et al. Sequence variants from whole genome sequencing a large group of Icelanders. Scientific Data. 2015;2:150011. Guo Y, Long J, He J, Li C-I, Cai Q, Shu X-O, Zheng W, Li C. Exome sequencing generates high quality data in non-target regions. BMC Genomics. 2012;13(1):1–10. Choi J-W, Liao X, Stothard P, Chung W-H, Jeon H-J, Miller SP, Choi S-Y, Lee J-K, Yang B, Lee K-T, et al. Whole-genome analyses of Korean native and Holstein cattle breeds by massively parallel sequencing. PLoS One. 2014;9(7):e101127. Boitard S, Boussaha M, Capitan A, Rocha D, Servin B. Uncovering adaptation from sequence data: lessons from genome Resequencing of four cattle breeds. Genetics. 2016;203(1):433. Yaro M, Munyard KA, Stear MJ, Groth DM. Molecular identification of livestock breeds: a tool for modern conservation biology. Biol Rev Camb Philos Soc. 2017;92(2):993–1010. Zhan X, Dixon A, Batbayar N, Bragin E, Ayas Z, Deutschova L, Chavko J, Domashevsky S, Dorosencu A, Bagyura J, et al. Exonic versus intronic SNPs: contrasting roles in revealing the population genetic differentiation of a widespread bird species. Heredity. 2015;114(1):1–9. Gu W, Gurguis CI, Zhou JJ, Zhu Y, Ko E-A, Ko J-H, Wang T, Zhou T. Functional and structural consequence of rare Exonic single nucleotide polymorphisms: one story Two Tales. Genome Biol Evol. 2015;7(10):2929–40. Mwacharo JM, Elbeltagy AR, Kim ES, Haile A, Rischkowsky B, Rothschild MF. S0124 Indigenous stocks as treasure troves for sustainable livestock production in the 21st century: Insights from small ruminant genomics. J Anim Sci. 2016;94(7supplement4):12–3. Mwai O, Hanotte O, Kwon YJ, Cho S. African indigenous cattle: unique genetic resources in a rapidly changing world. Asian Australas J Anim Sci. 2015;28(7):911–21. Lee KT, Chung WH, Lee SY, Choi JW, Kim J, Lim D, Lee S, Jang GW, Kim B, Choy YH. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics. 2013;14(1):519. Gautier M, Foucaud J, Gharbi K, Cezard T, Galan M, Loiseau A, Thomson M, Pudlo P, Kerdelhue C, Estoup A. Estimation of population allele frequencies from next-generation sequencing data: pool-versus individual-based genotyping. Mol Ecol. 2013;22(14):3766–79. Qanbari S, Pausch H, Jansen S, Somel M, Strom TM, Fries R, Nielsen R, Simianer H. Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genet. 2014;10(2):e1004148. Johansson BM, Wiles MV. Evidence for involvement of activin a and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol. 1995;15(1):141–51. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Group TMGD. The mouse genome database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res. 2015;43(D1):D726–36. Smith CM, Finger JH, Hayamizu TF, McCright IJ, Xu J, Berghout J, Campbell J, Corbani LE, Forthofer KL, Frost PJ, et al. The mouse gene expression database (GXD): 2014 update. Nucleic Acids Res. 2014;42(D1):D818–24. Bult CJ, Krupke DM, Begley DA, Richardson JE, Neuhauser SB, Sundberg JP, Eppig JT. Mouse tumor biology (MTB): a database of mouse models for human cancer. Nucleic Acids Res. 2015;43(D1):D818–24. Trail JC, d'Ieteren GD, Maille JC, Yangari G. Genetic aspects of control of anaemia development in trypanotolerant N'Dama cattle. Acta Trop. 1991;48(4):285–91. Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974;23:23–35. Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Gietzen K, et al. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012;10(2):e1001258. Roffler GH, Amish SJ, Smith S, Cosart T, Kardos M, Schwartz MK, Luikart G. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate. Mol Ecol Resour. 2016;16(5):1147–64. Alvarez I, Traore A, Kabore A, Zare Y, Fernandez I, Tamboura HH, Goyache F. Microsatelitte analysis of the Rousse (red Sokoto) goat of Burkina Faso. Small Rumin Res. 2012;105(1–3):83–8. Alvarez I, Traoré A, Tamboura HH, Kabore A, Royo LJ, Fernández I, Ouédraogo-Sanou G, Sawadogo L, Goyache F. Microsatellite analysis characterizes Burkina Faso as a genetic contact zone between Sahelian and Djallonké sheep. Anim Biotechnol. 2009;20(2):47–57.