Analogs of the Orthogonal, Hamiltonian, Poisson, and Contact Lie Superalgebras in Characteristic 2

Journal of Nonlinear Mathematical Physics - Tập 17 - Trang 217-251 - 2021
Alexei Lebedev1
1Equa Simulation AB, Stockholm, Sweden

Tóm tắt

Over algebraically closed fields of characteristic 2, the analogs of the orthogonal, symplectic, Hamiltonian, Poisson, and contact Lie superalgebras are described. The number of non-isomorphic types, and several properties of these algebras are unexpected, for example, interpretation in terms of exterior differential forms preserved is not applicable to one of these types. The divided powers of differential forms and related (co)homology are introduced.

Tài liệu tham khảo

F. A. Berezin, Metod Vtorichnogo Kvantovaniya. (M. Nauka, 1965) Russian; English translation: The Method of Second Quantization. Pure and Applied Physics, Vol. 24 (New York-London: Academic Press, 1966).

J. Bernstein and D. Leites, Invariant differential operators and irreducible representations of Lie superalgebras of vector fields, Sel. Math. Sov. 1(2) (1981) 143–160.

P. Grozman, D. Leites and I. Shchepochkina, Invariant differential operators on supermanifolds and the standard model, in: M. Olshanetsky, A. Vainshtein (eds.), M. Marinov Memorial Volume (World Sci., 2002), pp. 508–555; arXiv:math.RT/0202193.

S. Konstein, A. Smirnov and I. Tyutin, General form of deformation of Poisson superbracket, arXiv:hep-th/0401023.

A. Lebedev, D. Leites and I. Shereshevskii, Lie superalgebra structures in C•. (n; n) and H•. (n; n). in: Lie Groups and Invariant Theory, É. Vinberg (ed.), Amer. Math. Soc. Transl. Ser. 2(213) (Amer. Math. Soc., Providence, RI, 2005), pp. 157–172; arXiv:math/0404139.

A. Lebedev, Non-degenerate bilinear forms in characteristic 2, related contact forms, simple Lie algebras and superalgebras; arXiv:math.AC/0601536.

D. Leites, New Lie superalgebras and mechanics, Soviet Math. Doklady 18(5) (1977) 1277–1280.

D. Leites (ed.) (J. Bernstein, S. Bouarroudj, B. Clarke, P. Grozman, A. Lebedev, D. Leites, I. Shchepochkina) Representation Theory. (Vol. 2. Quest for Simple Modular Lie Superalgebras), A. Salam School of Mathematical Sciences, Lahore (2009).

D. Leites and I. Shchepochkina, How should the antibracket be quantized? (Russian) Teoret. Mat. Fiz. 126(3) (2001) 339–369; translation in Theoret. Math. Phys. 126(3) (2001) 281–306; arXiv:math-ph/0510048.

D. Leites, Towards classification of simple finite dimensional modular Lie superalgebras in characteristic p, J. Prime Res. Math. 3 (2007) 101–110; arXiv:0710.5638.

L. Lin, Lie algebras K(ℱ, µi ) of Cartan type of characteristic p = 2 and their subalgebras (Chinese. English summary) J. East China Norm. Univ. Natur. Sci. 1 (1988) 16–23.

Yu. A. Neretin, Berezin’s “The Method of Second Quantization”. Forty years after, in: E. G. Karpel and R. A. Minlos (Compilers), D. Leites and I. Tyutin (eds.), Recollections on Felix Alexandrovich Berezin — the Founder of Supermathematics (MCCME, Moscow), pp. 382 (in Russian).

A. Premet and H. Strade, Classification of finite dimensional simple Lie algebras in prime characteristics, arXiv:math/0601380.

Ch. Sachse, Sylvester-t’Hooft generators and relations between them for sl(n) and gl(n | n) Teor. Mat. Fiz. 149(1) (2006) 3–17 (Russian; English translation in Theor. Math. Phys. 149(1) (2006) 1299–1311).

R. Steinberg, Lectures on Chevalley Groups, Notes prepared by John Faulkner and Robert Wilson (Yale University, New Haven, Conn., 1968).