Analog of heat equation for gaussian measure of a ball in Hilberrt space

Springer Science and Business Media LLC - Tập 3 - Trang 563-577 - 1990
Gyula Pap1
1Department of Mathematics, University of Debrecen, Debrecen, Hungary

Tóm tắt

If μ a,T is a Gaussian measure on a Hilbert space with meana and covariance operatorT, andr is a fixed positive number, then the functiong(a,T)=μ a,T {‖x‖

Tài liệu tham khảo

Birman, M. S., and Solomjak, M. Z. (1987).Spectral Theory of Self-Adjoint Operators in Hilbert Space, Reidel, Dordrecht. Chevet, S. (1983). Compacité dans l'espace des probabilités de Radon gaussiennes sur un Banach.C.R. Acad. Sc. Paris 296, 275–278. Dieudonné, J. (1969).Foundations of Modern Analysis, Academic Press, New York. Dunford, N., and Schwartz, J. T. (1963).Linear Operators. II, Interscience Publishers, New York. Hertle, A. (1982). Gaussian plane and spherical means in separable Hilbert spaces. InMeasure Theory (Proc. Int. Conf., Oberwolfach, 1981), Lecture Notes in Math., Vol. 945, Springer-Verlag, Berlin, pp. 314–335. Kuo, H.-H. (1975).Gaussian Measures in Banach Spaces, Springer-Verlag, Berlin. Linde, W. (1989). Gaussian measure of translated balls in a Banach space.Theory Prob. Appl. 34, 349–360. Ostrovskii, E. I. (1975). Gaussian semigroups in a Banach space.Theory Prob. Appl. 20, 434–436. Pap, Gy. (1984). Dependence of Gaussian measure on covariance in Hilbert space. InProbability Theory on Vector Spaces III (Proc. Int. Conf., Lublin, 1983), Lecture Notes in Math., Vol. 1080, Springer-Verlag, Berlin, pp. 188–194. Linde, W. (1983).Infinitely Divisible and Stable Measures on Banach Spaces. Teubner-Verlag, Leipzig.