Chuyển hóa đồng thời chất thải rắn đô thị với cây sậy khổng lồ trong điều kiện tâm nhiệt

Journal of Material Cycles and Waste Management - Tập 21 - Trang 1332-1340 - 2019
Firas Al-Zuhairi1, Luca Micoli2, Ciro Florio3, Angelo Ausiello2, Maria Turco2, Domenico Pirozzi2, Giuseppe Toscano2
1University of Technology, Baghdad, Iraq
2Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Università degli Studi di Napoli Federico II, Naples, Italy
3Department of Science and Technology (DiST), Università Parthenope di Napoli, Naples, Italy

Tóm tắt

Việc chuyển hóa đồng thời các nguyên liệu kết hợp trong môi trường yếm khí cải thiện sản lượng biogas nhờ vào sự cân bằng tốt hơn của các chất dinh dưỡng trong môi trường tiêu hóa. Một lựa chọn phù hợp để nâng cao sản lượng biogas từ quá trình tiêu hóa yếm khí chất thải rắn đô thị là việc chuyển hóa đồng cùng với các vật liệu lignocellulosic. Sự khai thác ngày càng tăng của cây sậy khổng lồ trong một số lĩnh vực công nghiệp đã thúc đẩy một cuộc khảo sát sơ bộ về việc chuyển hóa đồng thời của sậy khổng lồ bị phát nổ hơi nước và phần hữu cơ của chất thải rắn đô thị (OFMSW). Quá trình tiêu hóa yếm khí được thực hiện ở 37 °C, trong chế độ hoạt động theo mẻ. Khối lượng biogas được sản xuất và các biểu đồ nồng độ - thời gian của axit béo bay hơi đã được phân tích cho các tỷ lệ ban đầu khác nhau của nguyên liệu kết hợp. Tất cả các hỗn hợp đều hoạt động tốt hơn so với nguyên liệu đơn lẻ. Sản lượng biogas tối ưu đạt được với việc chuyển hóa đồng của một hỗn hợp chứa 75% OFMSW và 25% cây sậy khổng lồ, sản xuất ra 236 mL CH4/g VS với mức tăng 1.5 lần so với quá trình tiêu hóa OFMSW đơn lẻ.

Từ khóa

#chất thải rắn đô thị #cây sậy khổng lồ #tiêu hóa yếm khí #sản lượng biogas #vật liệu lignocellulosic

Tài liệu tham khảo

Ackerman F (2000) Waste management and climate change. Local Environ 5(2):223–229. https://doi.org/10.1080/13549830050009373 ASTM E1755-01 (2015) Standard test method for ash in biomass, West Conshohocken, PA. https://doi.org/10.1520/e1755-01r15 ASTM E871-82 (2013) Standard test method for moisture analysis of particulate wood fuels, West Conshohocken, PA. https://doi.org/10.1520/e0871-82r13 ASTM E872-82 (2013) Standard test method for volatile matter in the analysis of particulate wood fuels, West Conshohocken, PA. https://doi.org/10.1520/e0872-82r13 Ausiello A, Micoli L, Pirozzi D, Toscano G, Turco M (2015) Biohydrogen production by dark fermentation of Arundo donax for feeding fuel cells. Chem Eng Trans 43:385–390. https://doi.org/10.3303/CET1543065 Ausiello A, Florio C, Micoli L, Toscano G, Turco M, Pirozzi D (2017) Biohydrogen production by dark fermentation of Arundo donax using a new methodology for selection of H2-producing bacteria. Int J Hydrog Energy 42(52):30599–30612. https://doi.org/10.1016/j.ijhydene.2017.10.021 Barber RD, Ferry JG (2001) Methanogenesis. Encyclopedia of life sciences. Nature Publishing Group, London. https://doi.org/10.1038/npg.els.0000475 [Online] Bolzonella D, Pavan P, Mace S, Cecchi F (2006) Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience. Water Sci Technol 53(8):23–32. https://doi.org/10.2166/wst.2006.232 Brown D, Li Y (2013) Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol 127:275–280. https://doi.org/10.1016/j.biortech.2012.09.081 Chavalparit O, Sasananan S, Kullavanijaya P, Charoenwuttichai C (2018) Anaerobic co-digestion of hydrolysate from alkali pre-treated oil palm empty fruit bunches with biodiesel waste glycerol. J Mater Cycles Waste Manag 20:336–344. https://doi.org/10.1007/s10163-017-0585-5 Chen X, Yan W, Sheng K, Sanati M (2014) Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste. Bioresour Technol 154:215–221. https://doi.org/10.1016/j.biortech.2013.12.054 Corno L, Pilu R, Adani F (2014) Arundo donax L.: a non-food crop for bioenergy and bio-compound production. Biotechnol Adv 32(8):1535–1549. https://doi.org/10.1016/j.biotechadv.2014.10.006 De la Rubia MA, Villamil JA, Rodriguez JJ, Borja R, Mohedano AF (2018) Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge. Waste Manag 76:315–322. https://doi.org/10.1016/j.wasman.2018.02.046 Dennehy C, Lawlor PG, McCabe MS, Cormican P, Sheahan J, Jiang Y, Gardiner GE (2018) Anaerobic co-digestion of pig manure and food waste; effects on digestate biosafety, dewaterability, and microbial community dynamics. Waste Manag 71:532–541. https://doi.org/10.1016/j.wasman.2017.10.047 Department for Environment, Food and Rural Affairs (2015) Anaerobic Digestion Strategy and Action Plan Annual Report. https://www.gov.uk/government/publications/anaerobic-digestion-strategy-and-action-plan-annual-report-2013-to-2014. Accessed 11 Sept 2018 Eaton A, Franson M (2005) Standard methods for the examination of water and wastewater American Public Health Association, American Water Works Association, and Water Environment Federation. American Public Health Association, Washington Etuwe CN, Momoh YOL, Iyagba ET (2016) Development of mathematical models and application of the modified Gompertz model for designing batch biogas reactors. Waste Biomass Valor 7:543–550. https://doi.org/10.1007/s12649-016-9482-8 Fantozzi F, Buratti C (2011) Anaerobic digestion of mechanically treated OFMSW: experimental data on biogas/methane production and residues characterization. Bioresour Technol 102:8885–8892. https://doi.org/10.1016/j.biortech.2011.06.077 Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin Fiorentino N, Ventorino V, Rocco C, Cenvinzo V, Agrelli D, Gioia L, Di Mola I, Adamo P, Pepe O, Fagnano M (2016) Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil. Sci Total Environ 575:1375–1383. https://doi.org/10.1016/j.scitotenv.2016.09.220 Forster Carneiro T, Perez M, Romero LI, Sales D (2007) Dry thermophilic anaerobic digestion of organic fraction of the municipal solid waste: focusing on the inoculum sources. Bioresour Technol 98:3195–3203. https://doi.org/10.1016/j.biortech.2006.07.008 Guven H, Akca MS, Iren E, Keles F, Ozturk I, Altinbas M (2018) Co-digestion performance of organic fraction of municipal solid waste with leachate: preliminary studies. Waste Manag 71:775–784. https://doi.org/10.1016/j.wasman.2017.04.039 Hagos K, Zong J, Li D, Liu C, Lu X (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev 76:1485–1496. https://doi.org/10.1016/j.rser.2016.11.184 Ismail ZZ, Noori NA (2018) Anaerobic co-digestion of giant reed for biogas recovery. J Eng 24(3):68–83. https://doi.org/10.31026/j.eng.2018.03.06 KADA Research (2013) Anaerobic digestion. A market profile. http://www.adbioresources.org/wp-content/uploads/2013/04/KADA-Final-AD-report-March-2013.pdf?_ga¼1.50385889.951436547. Accessed 11 Sept 2018 Li W, Loh KC, Zhang J, Tong YW, Dai Y (2018) Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system. Appl Energy 209:400–408. https://doi.org/10.1038/s41598-017-01408-w Liew LN, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46:125–132. https://doi.org/10.1016/j.biombioe.2012.09.014 Maragkaki AE, Vasileiadis I, Fountoulakis M, Kyriakou A, Lasaridi K, Manios T (2018) Improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater. Waste Manag 71:644–651. https://doi.org/10.1016/j.wasman.2017.08.016 Mata-Alvarez J, Dosta J, Macé S, Astals S (2011) Co-digestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol 31:99–111. https://doi.org/10.3109/07388551.2010.525496 Muthanna JA (2016) Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments: review. J Taiwan Inst Chem E 63:336–343. https://doi.org/10.1016/j.jtice.2016.03.030 Negi S, Dhar H, Hussain A, Kumar S (2018) Biomethanation potential for co-digestion of municipal solid waste and rice straw: a batch study. Bioresour Technol 254:139–144. https://doi.org/10.1016/j.biortech.2018.01.070 Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2):375–380 Nielfa A, Cano R, Fdz-Polanco M (2015) Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep 5:14–21. https://doi.org/10.1016/j.btre.2014.10.005 Panyaping K, Moontee P (2018) Potential of biogas production from mixed leaf and food waste in anaerobic reactors. J Mater Cycles Waste Manag 20:723–737. https://doi.org/10.1007/s10163-017-0629-x Parkin G, Owen W (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112(5):867–920. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867) Pham CH, Triolo JM, Cu TTT, Pedersen L, Sommer SG (2013) Validation and recommendation of methods to measure biogas production potential of animal manure. Asian-Australas J Anim Sci 26(6):864. https://doi.org/10.5713/ajas.2012.12623 Pinto MPM, Mudhoo A, de Alencar Neves T, Berni MD, Forster-Carneiro T (2018) Co-digestion of coffee residues and sugarcane vinasse for biohythane generation. J Environ Chem Eng 6(1):146–155. https://doi.org/10.1016/j.wasman.2017.07.016 Rana R, Ganguly R, Gupta AK (2018) Physico-chemical characterization of municipal solid waste from Tricity region of northern India: a case study. J Mater Cycles Waste Manag 20:678. https://doi.org/10.1007/s10163-017-0615-3 Reddy K, Hettiarachchi H, Gangathulasi J, Bogner J, Lagier T (2009) Geotechnical properties of synthetic municipal solid waste. Int J Geotech Eng 3(3):429–438. https://doi.org/10.3328/IJGE.2009.03.03.429-438 Sharma A, Ganguly R, Gupta AK (2018) Matrix method for evaluation of existing solid waste management system in Himachal Pradesh, India. J Mater Cycles Waste Manag 20(3):1813–1831. https://doi.org/10.1007/s10163-018-0703-z Shen Y, Linville JL, Urgun-Demirtas M, Mintz MM, Snyder SW (2015) An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renew Sustain Energy Rev 50:346–362. https://doi.org/10.1016/j.rser.2015.04.129 Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7:609–616. https://doi.org/10.1016/S1093-0191(02)00049-7 Tanahashi M (1990) Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. Wood research: bulletin of the Wood Research Institute Kyoto University 77:49–117. http://hdl.handle.net/2433/53271. Accessed 11 Sept 2018 Toscano G, Ausiello A, Micoli L, Zuccaro G, Pirozzi D (2013) Anaerobic digestion of residual lignocellulosic materials to biogas and biohydrogen. Chem Eng Trans 32:487–492. https://doi.org/10.3303/CET1332082 Tsapekos P, Kougias PG, Kuthiala S, Angelidaki I (2018) Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers Manag 159:1–6. https://doi.org/10.1016/j.enconman.2018.01.002 Wei Y, Li J, Shi D, Liu G, Zhao Y, Shimaoka T (2017) Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour Conserv Recycl 122:51–65. https://doi.org/10.1016/j.resconrec.2017.01.024 Xie S, Hai FI, Zhan X, Guo W, Ngo HH, Price WE, Nghiem LD (2016) Anaerobic co-digestion: a critical review of mathematical modelling for performance optimization. Bioresour Technol 222:498–512. https://doi.org/10.1016/j.biortech.2016.10.015 Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 78:527–530. https://doi.org/10.1016/j.renene.2015.01.033 Yoon Y, Lee S, Kim K, Jeon T, Shin S (2018) Study of anaerobic co-digestion on wastewater treatment sludge and food waste leachate using BMP test. J Mater Cycles Waste Manag 20:283–292. https://doi.org/10.1007/s10163-017-0581-9 Zahedi S, Sales D, García-Morales JL, Solera R (2018) Obtaining green energy from dry-thermophilic anaerobic co-digestion of municipal solid waste and biodiesel waste. Biosyst Eng 170:108–116. https://doi.org/10.1016/j.biosystemseng.2018.04.005 Zhang H, Luo L, Li W, Wang X, Sun Y, Sun Y, Gong W (2018) Optimization of mixing ratio of ammoniated rice straw and food waste co-digestion and impact of trace element supplementation on biogas production. J Mater Cycles Waste Manag 20:745–753. https://doi.org/10.1007/s10163-017-0634-0 Zhu B, Gikas P, Zhang R, Lord J, Jenkins B, Li X (2009) Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresour Technol 100(3):1122–1129. https://doi.org/10.1016/j.biortech.2008.08.024