Anaerobic Oxidation of Methane: Progress with an Unknown Process

Annual Review of Microbiology - Tập 63 Số 1 - Trang 311-334 - 2009
Katrin Knittel1, Antje Boëtius1
1Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany

Tóm tắt

Methane is the most abundant hydrocarbon in the atmosphere, and it is an important greenhouse gas, which has so far contributed an estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron acceptor according to the net reaction:[Formula: see text]This review summarizes what is known and unknown about AOM on earth and its key catalysts, the ANME clades and their bacterial partners.

Từ khóa


Tài liệu tham khảo

10.1111/j.1462-2920.2005.00922.x

10.1016/S0012-821X(02)00878-6

10.1029/GB002i003p00279

10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2

10.1073/pnas.0600035103

Biddle JF, 2008, A genetic view of diversity beneath the seafloor

10.1128/AEM.71.8.4345-4351.2005

10.1073/pnas.0401188101

Boetius A, 2008, Microbiol Monogr

10.1038/35036572

10.1128/AEM.00574-06

10.1126/science.281.5373.99

10.1371/journal.pbio.0030077

10.1038/nature04418

10.1016/j.gca.2007.11.039

10.2475/ajs.306.4.246

10.1016/j.epsl.2007.09.026

10.4319/lo.2006.51.3.1315

10.1128/AEM.71.8.4592-4601.2005

Dickens GR, 2003, Biotechnol. Bioeng., 213, 169

10.1128/AEM.71.12.8099-8106.2005

10.1128/AEM.71.12.8925-8928.2005

10.1007/s001140050619

10.1111/j.1462-2920.2008.01724.x

10.1128/AEM.71.7.3725-3733.2005

10.1073/pnas.0604517103

10.1021/es015695y

10.1128/AEM.69.9.5483-5491.2003

10.1126/science.1100025

10.1016/S0025-3227(96)00075-8

10.1128/AEM.01812-08

10.1080/01490450802006884

10.1007/978-3-662-05127-6_28

10.1038/19751

10.1029/94GB01800

10.1073/pnas.0606083103

10.1073/pnas.0511033103

10.1128/AEM.70.12.7445-7455.2004

10.1016/j.femsec.2004.06.015

10.4319/lo.1985.30.5.0944

10.2307/1309929

10.1016/j.chemgeo.2003.12.019

10.1128/AEM.70.2.1231-1233.2004

10.1126/science.1102556

10.1016/j.gca.2008.05.039

10.1080/01490450303896

10.1128/AEM.71.1.467-479.2005

10.1111/j.1472-4669.2008.00172.x

10.1111/j.1462-2920.2008.01607.x

10.1038/nature02207

10.1016/j.palaeo.2005.04.031

10.1007/BF02346062

10.1111/j.1462-2920.2006.01122.x

54. Lever MA. 2008.Anaerobic carbon cycling pathways in the deep subseafloor investigated via functional genes, chemical gradients, stable carbon isotopes, and thermodynamic calculations. PhD thesis. Univ. NC, Chapel Hill

10.1128/AEM.00886-06

10.1128/AEM.00016-07

10.1126/science.185.4157.1167

10.1111/j.1462-2920.2006.01063.x

10.1021/ja802929z

10.1099/mic.0.2006/003152-0

10.1126/science.1072502

10.1128/AEM.71.6.3235-3247.2005

Moran JJ, 2008, Environ. Microbiol., 10, 162, 10.1111/j.1462-2920.2007.01441.x

10.1111/j.1462-2920.2006.01127.x

10.1046/j.1462-2920.2002.00299.x

10.1111/j.1462-2920.2004.00669.x

10.1016/j.gca.2006.08.010

10.1016/j.orggeochem.2007.11.003

10.5194/bg-2-335-2005

10.1038/nature05227

10.1264/jsme2.ME08514

10.1111/j.1574-6941.2008.00451.x

10.1128/AEM.01751-07

10.1016/j.gca.2005.04.012

10.5194/bg-5-1587-2008

10.1111/j.1462-2920.2007.01526.x

10.1128/AEM.67.4.1922-1934.2001

10.1126/science.1061338

10.1073/pnas.072210299

10.1128/AEM.66.3.1126-1132.2000

10.1111/j.1462-2920.2006.01237.x

10.1073/pnas.0711303105

Rabus R, 2000, The Prokaryotes, 659

10.1038/nature04617

10.1016/0012-821X(76)90195-3

10.1021/cr050362v

10.1016/j.palaeo.2005.04.033

10.1016/j.orggeochem.2008.02.021

10.1126/science.1154545

10.4319/lo.2008.53.4.1521

10.3354/meps231121

10.1128/AEM.69.3.1680-1686.2003

10.1128/AEM.69.6.3580-3592.2003

10.1029/2005GC001049

10.1016/j.mib.2005.10.002

10.1111/j.1472-4669.2007.00098.x

10.1128/AEM.00562-06

10.1016/j.orggeochem.2008.04.019

10.1016/j.margeo.2005.02.023

10.1046/j.1462-2920.2001.00154.x

10.1128/AEM.68.4.1994-2007.2002

10.1038/ismej.2007.90

10.1099/00221287-144-9-2377

10.1196/annals.1419.000

10.1016/S0016-7037(99)00177-5

10.1128/AEM.67.4.1646-1656.2001

10.3354/meps264001

10.1128/AEM.71.10.6375-6378.2005

10.4319/lo.2005.50.6.1771

10.1016/j.gca.2005.01.002

10.1128/AEM.02685-06

10.1046/j.1462-2920.2000.00135.x

10.1002/bit.260170103

10.1111/j.1574-6941.2006.00147.x

10.1111/j.1462-2920.2008.01653.x

10.5194/bg-5-1127-2008

10.1016/S0146-6380(86)80013-4

10.1007/0-387-30742-7_33

Zehnder AJB, 1979, J. Bacteriol., 137, 420, 10.1128/jb.137.1.420-432.1979