An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies

Transfusion - Tập 55 Số 1 - Trang 205-219 - 2015
Angelo D’Alessandro1, Anastasios G. Kriebardis2, Sara Rinalducci3, Marianna H. Antonelou4, Kirk C. Hansen1, Issidora S. Papassideri4, Lello Zolla3
1Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
2Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological Educational Institute of Athens, Athens, Greece
3Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
4Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece

Tóm tắt

Red blood cell (RBC) aging in the blood bank is characterized by the accumulation of a significant number of biochemical and morphologic alterations. Recent mass spectrometry and electron microscopy studies have provided novel insights into the molecular changes underpinning the accumulation of storage lesions toRBCsin the blood bank. Biochemical lesions include altered cation homeostasis, reprogrammed energy, and redox metabolism, which result in the impairment of enzymatic activity and progressive depletion of high‐energy phosphate compounds. These factors contribute to the progressive accumulation of oxidative stress, which in turn promotes oxidative lesions to proteins (carbonylation, fragmentation, hemoglobin glycation) and lipids (peroxidation). Biochemical lesions negatively affectRBCmorphology, which is marked by progressive membrane blebbing and vesiculation. These storage lesions contribute to the altered physiology of long‐storedRBCsand promote the rapid clearance of up to one‐fourth of long‐storedRBCsfrom the recipient's bloodstream after 24 hours from administration. While prospective clinical evidence is accumulating, from the present review it emerges that biochemical, morphologic, and omics profiles of storedRBCshave observable changes after approximately 14 days of storage. Future studies will assess whether these in vitro observations might have clinically meaningful effects.

Từ khóa


Tài liệu tham khảo

10.1056/NEJMoa070403

10.1111/j.1537-2995.2009.02211.x

10.1093/bja/aet405

D'Alessandro A, 2010, Red blood cell storage: the story so far, Blood Transfus, 8, 82

10.1016/j.jprot.2009.11.001

Karon BS, 2012, Temporal sequence of major biochemical events during blood bank storage of packed red blood cells, Blood Transfus, 28, 1

D'Alessandro A, 2013, Biochemistry of red cell aging in vivo and storage lesions. European Haematology Association—EHA 18 Educational Book, Haematologica, 98, 389

10.3324/haematol.2011.051789

10.1111/j.1365-3148.2012.01139.x

10.1016/j.bbalip.2008.07.008

10.1016/j.jprot.2012.08.014

10.1016/j.jprot.2009.07.010

10.1111/j.1365-3148.2008.00892.x

10.1016/j.biocel.2012.04.019

D'Alessandro A, 2013, Red blood cell subpopulations in freshly drawn blood: application of proteomics and metabolomics to a decades‐long biological issue, Blood Transfus, 11, 1

10.1111/j.1365-2141.2012.09100.x

Marrocco C, 2012, Red blood cell populations and membrane levels of peroxiredoxin 2 as candidate biomarkers to reveal blood doping, Blood Transfus, 10, s71

10.1016/j.tmrv.2014.03.003

10.1073/pnas.0708160104

10.1111/j.1365-3148.2010.01016.x

10.1016/j.jprot.2012.03.012

Romero PJ, 2004, Determinant factors for an apparent increase in oxygen affinity of senescent human erythrocytes, Acta Cient Venez, 55, 83

10.1016/0305-0491(72)90081-8

10.1016/j.transci.2010.05.011

10.1046/j.1537-2995.1979.19279160297.x

10.1016/j.jprot.2012.06.032

10.1182/blood.V60.1.92.92

10.1016/j.bbamem.2010.02.002

10.1016/0305-0491(94)90014-0

10.1016/0006-291X(83)90806-9

10.1038/194877a0

Valeri CR, 1969, Restoration in vivo of erythrocyte adenosine triphosphate, 2,3‐diphosphoglycerate, potassium ion, and sodium ion concentrations following the transfusion of acid‐citrate‐dextrose‐stored human red blood cells, J Lab Clin Med, 73, 722

10.1177/1535370213488474

10.1021/pr900831f

10.1586/14789450.2013.840440

10.1046/j.1537-2995.2000.40030353.x

Pertinhez TA, 2014, Biochemical assessment of red blood cells during storage by 1H nuclear magnetic resonance spectroscopy. Identification of a biomarker of their level of protection against oxidative stress, Blood Transfus, 5, 1

10.1016/j.jbiotec.2009.08.010

10.1016/j.tmrv.2014.01.003

10.1371/journal.pone.0071060

10.1111/j.1537-2995.2010.02700.x

Sparrow RL, 2012, Time to revisit red blood cell additive solutions and storage conditions: a role for “omics” analyses, Blood Transfus, 10, s7

10.1111/j.1537-2995.2010.03026.x

10.1089/rej.2012.1394

10.1111/j.1365-2141.1975.tb00540.x

10.1021/pr070179d

10.1111/j.1537-2995.2009.02449.x

10.1073/pnas.0905999106

Castagnola M, 2010, Oxygen‐linked modulation of erythrocyte metabolism: state of the art, Blood Transfus, 8, 53

10.1042/BJ20081557

Matte A, 2012, Membrane association of peroxiredoxin‐2 in red cells is mediated by the N‐terminal cytoplasmic domain of band 3, Free Radic Biol Med, 55, 27, 10.1016/j.freeradbiomed.2012.10.543

10.1182/blood-2006-09-048728

10.1111/j.1537-2995.2010.03032.x

10.3389/fphys.2013.00387

10.1111/j.1537-2995.2009.02133.x

Rinalducci S, 2012, Oxidative stress and caspase‐mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage, Blood Transfus, 10, s55

10.1111/j.1537-2995.2007.01254.x

10.1002/pmic.201200280

D'Amici GM, 2012, Red blood cell storage in SAGM and AS3: a comparison through the membrane two‐dimensional electrophoresis proteome, Blood Transfus, 10, 46

10.1111/j.1537-2995.2007.01630.x-i2

10.1111/j.1582-4934.2007.00008.x

10.1111/j.1537-2995.2008.01794.x

10.1016/j.jprot.2012.05.004

10.1016/j.bcmd.2006.01.003

10.1111/vox.12029

10.1111/j.1537-2995.2007.01230.x

10.1111/j.1423-0410.2009.001210.x

10.1046/j.1432-1327.1999.00336.x

10.1182/blood-2011-10-386805

10.1258/ebm.2011.010394

10.1177/193229680800200427

10.1016/S0891-5849(99)00149-5

10.1016/0955-2863(95)00194-8

10.1111/j.1537-2995.2011.03186.x

10.1089/jir.2008.0072

10.1172/JCI105328

10.1111/j.1537-2995.2010.02929.x

Timperio AM, 2013, Red blood cell lipidomics analysis through HPLC‐ESI‐qTOF: application to red blood cell storage, J Integr Omics, 3, 11

10.1016/j.bbamem.2012.10.026

10.1038/cddis.2012.143

Mohandas N, 1993, Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids, Semin Hematol, 30, 171

10.1002/ajh.20753

10.1006/jsre.2001.6306

10.1103/PhysRevLett.98.018102

10.1111/trf.12080

10.1159/000357986

10.1111/j.1537-2995.2009.02521.x

10.1159/000339809

10.1111/vox.12130

10.1182/blood-2012-01-404103

10.3389/fphys.2013.00376

10.1111/j.1365-2141.2008.07055.x

10.1111/j.1537-2995.2006.00692.x

10.1161/CIRCULATIONAHA.110.008698

10.1016/j.tmrv.2005.08.001

10.1111/j.1537-2995.2011.03099.x

10.1111/j.1537-2995.2011.03100.x

10.1111/vox.12014

10.1016/j.trprot.2013.04.004

10.1111/j.1537-2995.2005.00547.x

10.1111/vox.12042

10.1016/j.jprot.2012.05.031

Canellini G, 2012, Red blood cell microparticles and blood group antigens: an analysis by flow cytometry, Blood Transfus, 10, s39

Sparrow RL, 2013, In vitro measures of membrane changes reveal differences between red blood cells stored in saline‐adenineglucose‐mannitol and AS‐1 additive solutions: a paired study, Transfusion, 54, 560, 10.1111/trf.12344

10.1111/j.1537-2995.2011.03506.x

10.1159/000087725

Palek J, 1974, The dependence of shape of human erythrocyte ghosts on calcium, magnesium and adenosine triphosphate, Blood, 44, 583, 10.1182/blood.V44.4.583.583

10.1111/j.1582-4934.2011.01310.x

10.1111/trf.12106

10.1111/trf.12330

10.1111/j.1537-2995.2010.02585.x

10.1182/blood-2013-10-532424

10.1111/jth.12214

10.1073/pnas.0910785107

10.1074/jbc.M410650200

10.1074/jbc.270.10.5659

10.1016/j.bcmd.2010.02.007

10.1016/j.bcmd.2010.02.006

10.1186/1559-0275-10-1

10.3324/haematol.2013.103333

10.1111/j.1537-2995.2010.02689.x

10.3390/ijms11114601

10.1186/2046-4053-3-28

Dern RJ, 1966, Studies on the preservation of human blood. I. Variability in erythrocyte storage characteristics among healthy donors, J Lab Clin Med, 67, 955

10.1111/trf.12264

10.1111/j.1537-2995.2009.02275.x

10.1111/j.1365-2141.1988.tb04237.x

10.1111/trf.12605

Tarasev M, 2011, Evaluation of novel in‐vitro RBC fragility metrics as age‐independent measures of stored RBC quality, Transfusion, 51, 79A

10.1111/j.1537-2995.2012.03748.x

10.1182/asheducation-2011.1.475

10.1371/journal.pone.0026033

10.1182/blood.V57.4.671.671

10.1111/j.1423-0410.2010.01439.x

10.1111/vox.12068

10.1111/j.1365-3148.2011.01089.x

Dinkla S, 2013, Phosphatidylserine exposure on stored red blood cells as a parameter for donor‐dependent variation in product quality, Blood Transfus, 3, 1

10.1111/trf.12468

Wagner SJ, 2013, Research opportunities in optimizing storage of red blood cell products, Transfusion, 54, 483, 10.1111/trf.12244

10.1111/j.1423-0410.2010.01313.x

Dean MM, 2013, Donor variation in biological mediators during storage of packed red blood cells, Blood, 122, 3655, 10.1182/blood.V122.21.3655.3655

10.1111/j.1423-0410.2008.01121.x

10.1016/j.jprot.2012.03.054

10.1111/j.1537-2995.2010.02959.x

10.1111/j.1537-2995.2010.02960.x

10.1016/j.bcmd.2012.02.004

10.1111/j.1537-2995.2008.01735.x

10.1039/c3mb25575a

Yoshida T, 2010, Anaerobic storage of red blood cells, Blood Transfus, 8, 220

10.1111/j.1537-2995.2010.03021.x

10.1046/j.1537-2995.2002.00115.x

Pallotta V, 2014, Red blood cell storage with vitamin C and N‐acetylcysteine prevents oxidative stress‐related lesions: a metabolomics overview, Blood Transfus, 12, 367

10.1002/ajh.23487